Přejít k hlavnímu obsahu
top

Bibliografie

Journal Article

Effective solution of a linear system with Chebyshev coefficients

Kujan Petr, Hromčík M., Šebek Michael

: Integral Transforms and Special Functions vol.20, 8 (2009), p. 619-628

: CEZ:AV0Z10750506

: 1M0567, GA MŠk

: orthogonal Chebyshev polynomials, hypergeometric functions, optimal PWM problem

: 10.1080/10652460902727938

: http://dx.doi.org/10.1080/10652460902727938

(eng): This paper presents an efficient algorithm for a special triangular linear system with Chebyshev coefficients. We present two methods of derivations, the first is based on formulae where the nth power of x is solved as the sum of Chebyshev polynomials and modified for a linear system. The second deduction is more complex and is based on the Gauss–Banachiewicz decomposition for orthogonal polynomials and the theory of hypergeometric functions which are well known in the context of orthogonal polynomials. The proposed procedure involves O(nm) operations only, where n is matrix size of the triangular linear system L and m is number of the nonzero elements of vector b. Memory requirements areO(m), and no recursion formula is needed. The linear system is closely related to the optimal pulse-wide modulation problem.

(cze): Článek prezentuje efektivní algoritmus pro specielní trojúhelnikový lineární systém s Chebyshevovými koeficienty. Předkládáme dvě metody derivací, první je založena na rovnici, kde n-tá mocnica z x je řešena jako suma Chebyshevových polynomů a modifikována pro lineární systém. Druhé odvození je více komplexní a je založeno na Gauss-Banachiewicz dekompozici pro ortogonální polynomy a teorii hypergeometrických funkcí.

: BC