Linear Pattern Matching with Swaps for Short Patterns

Tomés Flouri Xhevi Qafmolla

Abstract— The Pattern Matching problem with swaps is a with a substring ofl" starting or ending af, given that all
variation of the classical pattern matching problem. It consists swaps are disjoint, i.e. no one character is involved in more

of finding all the occurrences of a pattern P in a text T, than one swap. BottP and 7' are sequences of characters

when an unrestricted number of disjoint local swaps is allowed. d f th finite ch ter Stof si T
In this paper, we present a new, efficient method for the ISWIITOIM e Ssame Hnite Characier Or sizéo. To

Swap Matching problem with short patterns. In particular, ~ Provide just a few applications of this definition, we could
we present an algorithm constructing a non-deterministic finite name mistyping in text pattern search, transmission noise
automaton for a given pattern P which, when transformed to adjusting in communications or finding of close mutations
a deterministic finite automaton, serves as a pattern matcher biology. For example in gene mutation phenomenon we
;{nnmg in time O(n), where n s the length of the input text observe swaps in a disease called Spinal Muscular Atrophy
[14]. Such cases serve as a convincing pointer to further
. INTRODUCTION theoretical study of swaps in computer science.

o . i The Swap Matching problem was introduced in 1995, as
) Finding aII_the occurrences ‘?f a g|ven pattern in a_ tXbne of the open problems in nonstandard string matching, by
i.e. the classm'al pattern mqtchmg, IS one ,Of the t?as'c armuthukrishnan [16]. Amir et al. have since then done exces-
most_well-stuc_jled pro_blems in computer science with MaN¥ive research in this area producing many interesting tesul
p_ractlcal appllan(_:es_ln many areas such as c_ompgtatlonmey first provided an algorithm oO(nm% logm log o)
biology, communications, data mining gnd muIt|med|e_1. Folime complexity for an alphabet set of size two (see [2]).
example the Boyer-Moore algorithm is implemented in theey 4150 showed that alphabets of larger sizes could be re-
emacs’ “s” command, or in UNIX's “grep”. UNIX's “diff _duced to the size of two having &M(log” o) time overhead.
command uses the longest common subsequence algoritf@yer i 1998, Amir et al. also studied some restrictive sase
[9] presented by Chvatal et al. since 1972. _[5] for which they could obtain an algorithm @(n log® m)

The tremendous and continuous expansion of these f'eléﬁne complexity. Back in the year 2000, again Amir et al.
however, implied the need of a more generalized theorefie 1o reduce the overhead of their 1998 algorithm, with th
ical foundation of the pattern matching concept. Resear¢ieihod of alphabet size reduction [3], introducing now an
has emerged in two directions: generalized matching angderhead of onlyO(log o). More recently, in another paper
approximate matching. In generali_zed matching one Se9|?§2003,Amiret al. found a new solution 6f(n log m log o)
exact occurrences _of the pattern in t.he _text, but _matchlqgne, using overlap matching [4]. It is important to mention
doesn’t mean equality. Instead, matching is done with “Uonip 4t 5|l the above streams of research are based on the Fast

cares’, less-than matching, or matching relation defined By rier Transformation (FFT).

a graph on the alphabet. In approximate matching one seekSrpe first efficient solution without using FFT was in-
to find approximate matches of the pattern. The closenessfq,ced in 2008 by lliopoulos and Rahman [13]. Their

a match is measured in terms of the number of primitive,nrq4ch consisted in introducing graph theory for iritial
operations necessary to convert the string into an exaglogeling the problem and then, using bit parallelism, they
match. This number is called the edit distance, also Ca"‘nrﬂaveloped an efficient algorithm running@(n+m) log m)

the Levenshtein distance, between the string and the pattefime complexity. The constraint given was that the pattern
Primitive operations can be insertion, deletion, subBdtu i, must be of a comparable size with the word size in

and transposition, or swapping. ~ the target machine, thus limiting their algorithm for small
In our paper we focus on the problem of Pattern Matchingaierns

with Swaps, also known as the Swap Matching problem. yiore recently, in 2009, Cantone et al. continued in

In Swap Matching context, we say that the pattéfnof it parallelism approach to introduce an algorithm named
length m matches the given text’ of lengthn at location crossSampLING [7]. The algorithm was characterized by
i, when an unrestricted number of adjacent characters frog,orst-case time complexity 61(nm) having a0(o) space
the pattern can be swapped in order to become identic@mplexity for short patterns fitting in a few machine words.

In the same year, Campanelli et al. presented an efficient
This research has been partially supported by the Minidtigducation, Y P P

Youth and Sports under research program MSM 6840770014pgrtde W&y [6] for solving the Swap Mat(.:hlr_lg problem with _Sma"
Czech Science Foundation as project No. 201/09/0807. patterns atO(nm?) time complexity in general. Their al-

T. Flouri and X. Qafmolla are with the Faculty of Electrical orithm was named BCKWARDS-CROSSSAMPLING and
Engineering, Department of Computer Science and Engineeg

ing, Czech Technical University in Prague, Czech Republidnher!ted many properties of the Orig_inaRGSSSAMPUNG
{flourtl, gaf nox1}@el . cvut.cz algorithm, but was based on a right-to-left scan of the

text. Albeit having a worse time complexity,ABKWARDS- of a non-deterministic finite automaton is the relatiogy C
CROSSSAMPLING proved to have better results in practice(Q x ¥*) x (Q x ¥*). For example, ifp € d(q,a) then
(for small patterns) than the other algorithms. (g, aw) Far (p,w), for arbitraryw € ¥*.

In this paper, we introduce an algorithm that runs in The extended transition functiof* of a deterministic
linear time. Our method uses finite automata (see [10], [15fnite automaton is defined inductively as follows:
and is based on preprocessing the pattern, an operation wey s _

2" -) 0*(g.¢) = q,

carry out only once at the beginning. Additionally, once the 2) 6*(q,us) = 8(6*(q,u), 5)
preprocessing is done, we can search in arbitrary many texts ’ G o
for the pattern without the need of preprocessing the patte?rhe language accepted by a deterministic finite automaton
again each time. M = (Q,%,9,q0,F) is defined asCy, = { u | p €

The rest of this article is organized as follows. In section 9"(qo,u) N pEF }.
we evoke some of the preliminary definitions needed for the Finite automatal/; and M» are said to besquivalentif
purpose of our paper. In section 3 we present our algorithfiey accept the same language, that{d/;) = L(M2).
along with the necessary proofs. In section 4 we demonstrateSubset constructioris a process transforming a non-
the implementation of our solution with an example. Sectiofeterministic finite automaton into an equivalent determin
5 serves as an overview of the time and space complexitigstic finite automaton. IfA/ = (Q,%,4,1,F) is a non-
Finally, in section 5 we draw some conclusions and discusgketerministic finite automaton andl/’ is the deterministic

further future work in our research. finite automaton obtained by subset construction frifm
then M’ is of the form M’ = (P(Q),%,d',I,F’) and it
Il. PRELIMINARIES holds:

An alphabetX is a non-empty, finite set of symbols. A
string z over a given alphabet is a finite sequence of symbols.
¥* denotes the set of all strings over alphahkeincluding

1) 8'(B,5) = U,ep 0(a,5), VB € P(Q),
2) F={B|BeP(Q) N BNF#0 }.

the emptystring, denoted by. A string of lengthm > 0 Transition diagram of a finite automaton M =
can be represented as a finite arrdy. .. m]. The length of (@, .6, qo, F") is a directed graph such that

the string can also be presented|as=m. A stringyisa , for each state; € Q, there exists exactly one node
substringof z if and only if z = uyv, wherez, y, u,v € ¥*. labeled byq drawn as circle or oval,

A substringy of a stringz can be represented as a finite 4 the graph has an arc from nodeo nodep labeled by
arrayz[i...j], i andj denoting the starting and the ending s if and only if M has a transition labeled byleading
position ofy in z, respectively. We define the concatenation from stateq to statep,

operation on the set of strings in the usual wayz iandy . the initial state has an-intransition with no source,

are strings over alphabat, then the concatenation of these , final states are drawn as two concentric circles or ovals.
strings iszy. In particular, form = 0 we obtain the empty
string, denoted by. For any setd we useP(A) to denote
the set of all subsets ol. P(A) is called thepowersetof

The transition table of a finite automatonM =
(Q,%,0,1, F) is atable consisting df)|+1 rows and/X|+1
A. A function P : X — {true,false} is called a predicate columns with th_e f'rSt. row and first cq.lu.mn mde?(ed by 0. A
cell of the table is indicated by the pdi,) where:i denotes
on X. . .
; : . the row andj the column. Cell§0, 1) upto (0, |X|) contain
Since our algorithms are based on finite automata . .
: . - €ach a uniquer € X. Cells (1,0) upto (|Q],0) contain a
we give brief definitions to related concepts below, . o ;
o . ; uniqueq € Q. The content of cellgi, j) wherei # 0 and
A non-deterministic finite automatod/ is a quintuple i £ 0 is the mappings([i, 0], [0, j])
(@,%,4,1,F), where:@Q is a finite set of statesy is an J A pF; i rfw ' t’:7) h B .
input alphabety is a mapping : @ x (X U {e}) — P(Q) svtvatp perrT\u %'0 oras Tngx, VE') eref| 71m' IS ?]
called a state transition functiod, C Q is a set of initial {)hertrpu ationr : {0,...,m —1} = {0,...,m — 1} suc
states, andt” C Q is a set of final states. Aeterministic at _
finite automatonM = (Q,X,d,qo, F) is a special case of 1) if m(i) = j thenn(j) = i (characters are swapped).
non-deterministic finite automaton such that the transitio 2) foralls, 7(i) € {i—1,4,i+1} (only adjacent characters

mapping is a function : Q x ¥ — Q and there is only one are swapped).

initial stateqy € Q. 3) if w(i) # i thenz[w(:)] # «[i] (identical characters are
The extended transition functiofi of a non-deterministic not swapped).

finite automaton is defined inductively as follows: For a given stringz and a swap permutatiom we
1) 6*(g,e) = {qa}, denoter(z) = 7 (0)].z[x(1)].--- .x[r(m—1)] theswapped
2) 6*(q,us) = U,es+(g,u) 0(P, 5)- versionof z.

Theleft languageof stateq of a non—dgerministic automaton For a given stringl’ representing the text and string
M = (Q,%,0,q0, F) is defined asL(q) = {u | ¢ € representing the pattern, whefE| = n and |P| = m, we
0*(qo,u)}. The language accepted by a non-deterministisay thatP has a swapped match at locatignf there exists
finite automatonM = (Q,X, 4,1, F) is defined asC,; = a swapped versio®’ of P, such thatP’ has an exact match
{w]|ped(qu), geI N peF }. Aconfiguration with T starting at location, i.e.n(P)=T[i—m+1...14].

[1l. ALGORITHM and Fig. 2-3, we can deduce tht(q,z) = d,+1(g,)

In this section, we present an algorithm for solvingfgr all g E<—Q" \ {n —1,n} and all 2 < Z and thus
M, (@) = L, (q) for all ¢ € Q,. In a similar way we

the swap matching problem. The algorithm constructs = —
non-deterministic finite automaton which can be transfatmededuce thatC sy, . (q) = L, (q) forall g € Qn—i.

to an equivalent deterministic finite automaton serving as a !N addition, automatori/,., has the following configu-
pattern matcher. We first present an algorithm which, giveftions over automatons,,:

a patternP, constructs a deterministic automaton accepting (7, Zp1w) Fag, s (04 1,w)

!/
the languagel = { «(P) } for all swap permutations:. @ |(_n B 1"77”“;3"“)) Fat (0, 2n0)
We then extend the first algorithm so that given a pattern Mn i1 (7}_+ ;w) _
P, constructs a so-calledsearching non-deterministic (_From M., L, (n) = L, (n) = Ly, and

automatonwhich accepts the languagé = { z.n(P) } L, ,(n—1) = <ZM,L+1(N —1) = Ly, _,, it holds that
for all z € ¥, whereX represents the alphabet over whichLas,,, = { z.Pn +1] | Vo € Ly, } U{ z.Pn +
pattern P was constructed. 1].P[n] | Yz € Ly, _, }. From the inductive step assumption
we have Ly, , = { n#(P[l...n —1]) } and Ly, =
Lemma 1:Given a patternP, Algorithm 1 constructs a { 7(P[l...n]) } and thusLy,,, = { 7[P[1...n].P[n +
deterministic finite automatoh/ = (Q, ¥, 6,0, F) accepting 1], 7(P[1...n —1]).P[n + 1].P[n] }.
languagel = { =(P) } for all swap permutations. u
Proof: By strong induction. LetR(n) be a predicate ~Lemma 2:Given a patternP of length m, Algorithm
defined over all integers.. PredicateR(n) is true, if the 2 constructs a non-deterministic finite automatdh =
automatonM = (Q,¥,6,0,F) constructed by Algorithm (@, 2, d,{0}, {m}) accepting languagé = { w.w(P) } for
1 accepts the languagé = { =(P[1...n) } for all swap all we X~
permutationsr. We define the base case and the inductive ~ Proof: We only provide a sketch of the proof: Since

step in the following manner: 0 € 60(0,z) for all x € X, it fE|dS that0 € ¢6*(0,w) for
. all w € ¥*. In other words, Ly, = { w | w € ©* }.

(1) Base caser(2) is true. Using Lemma 1 we can prove thaty, = { w.x(P) } for
(2) Inductive step:R(2),...,R(n) = R(n+1) all w e 3. -

Given an alphabeE = {x1, 22} and a stringz = z1x2,
the two possible swap versions of the string ake- and
Tox1. The automatonM constructed by Algorithm 1 can

Algorithm 1: Construction of a deterministic finite au-
tomaton accepting language= { w(x) }

have the following configurations: input @z =173 ..., - INPUL SITING Over
alphabet> representing the pattern
(0, z1ow) Fpr (1, 22w) Far (2, w) output : M - deterministic finite automaton with
(0, zoz1w) Far (U, z1w) Far (2, w) swaps, accepting language= {x(z)} for all

swap permutations

wherew € X*. Thus, the language accepted by automaton Q — {0}
M is L = {zyz4,2021 } and the base case holds. 280

Suppose we have a patteff, where |P| = n+1. By , p {m}
definition, symbolP[n + 1] can only be swapped with the , tor ; — 1 to m do Q—Quii,i
adjacent symboP[n]. Thus, the set of all swapped versions; tor ; 1 to m — 1 do
of Pis{n(P[1...n]).Pln+1] }U{ m(P[1...n—1]).Pln+ 4 §(i—1,z[i]) = {i}

]

1].P[n] }, and we will prove this statement. ; if 2[i] # z[i + 1] then
Suppose we have three automatall, ; = 4 §(i—1,zfi +1]) = {i'}
(Qn715275n71707Fn*1)1 Mn = (Qn,27(5n,0,Fn) 9 §(Zl7x[l]) = {Z+1}

and M, 11 = (Qn+1, %, 6n+1,0, Fr1) constructed over the end

patterns P[1...n — 1], P[1...n] and P[1...n + 1] 4; end

respectively, whereF,,_; = {n — 1}, F, = {n} §(m —1,z[m]) = {m}
and F,1; = {n + 1}. Their transition diagrams are,; ps — (Q,¥,4,0,F)
depicted in Fig. 1-3. According to the assumption in the
inductive step, automata/,_, and M, accept languages
Ly, , = {w(P[l...n—1]} and Ly, = {n(P[1...n]} Theorem 3:Given a patternP, Algorithm 1 constructs
respectively, for all swap permutations. Trivially from a deterministic automaton/; = (Q, %, 4, I, F'), having at
Algorithm 1 it holds that the transition function of anmost2|P| states, 1 initial state0f, 1 final state £ = {n})
automaton constructed over patterR[1...n + 1] is and3|P| — 2 transitions. Automatonl/; accepts language
a superset of the transition function of an automatof,; = { n(P) }.

constructed over patter®[1...n|. Specifically, it holds Theorem 4:Given a patternP, Algorithm 2 constructs a
that 6,1 C d, C 0,11. Moreover, from Algorithm 1 non-deterministic automaton/s = (Q,%, 4,1, F), having

Algorithm 2: Construction of a searching non- IV. EXAMPLE

deterministic finite automaton accepting language- In this section we demonstrate Algorithm 1 and 2 with a

{_wﬂ(x) } i i short example.

input @z =I1%3... Ly, - INPUL SITING OVer The transition diagram of the automatal; created
alphabet®’ representing the pattern by Algorithm 1 given the patteri® = abed is depicted

output : M - searching non-deterministic finite in Fig. 4. Automaton; accepts the languag€,;, =

automaton with swaps { abed, abde, acbd, bacd, bade }. In this case,M is a de-
1 Q « {0} terministic finite automaton but in general, the automaton
2 I {0} obtained by Algorithm 1 is non-deterministic (whe?i +
3610 1] = P[i] for 1 <i < |P)).
4 F—{m} To transforml/; obtained from Algorithm 1 to a searching
5 for i —1tomdo @ — QU{i,i'} automaton we modify the transition functi@nto J(q, z) =
6 for i < 1tom—1do d(q,x)U{q} forall ¢ € I and allz € X. The whole process is
7 (i —1,2[]) = {i} described in Algorithm 2. The automatdi,, constructed by
8 if x[i] # «[i + 1] then Algorithm 2, accepts the languadb,;, = { z.7(abcd) } for
9 60 —1,z[i + 1)) = {i'} all swap permutations and allz € X*. Again, for a given
10 S, x []) {i+1} pattern P = abcd, automatonMs, created by Algorithm 2
11 end is depicted in Fig. 5.M, accepts the languagg€,;, =
12 end { z.abed, x.abdc, x.acbd, x.bacd, xz.badc } for all x € X*.
13 6(m — 1,z[m]) = {m} From the theory of finite automata it holds that, for
14 for each z € ¥ do 6(0,z) < 6(0,z) U {0} every non-deterministic finite automaton exists an eqaival
15 M — (Q,%,0,1,F) deterministic finite automaton [17], [12]. The transforioat

(non-deterministic to deterministic) can be done using the
method of subset construction.
L) We obtain the deterministic finite automatol/ =
at most2|P| states, 1 initial stateI(_; {0}), 1 final state (Q,{a,b,¢,d}, 6, {0}, {{0,4}}, with its states and transition
(£ = {n}) and 3|P| — 2 + [X] transitions. AUtOTatO'M? function presented by the transition table in Table I. The
accepts languag€,y, = { =.7(P) } for all z € &, transition diagram of\/ is depicted in Fig. 6.

We present Theorem 3 and 4 without proof, as the results o preprocessing phase is now complete and we can
can be trivially calculated from Fig. 1-3 and Lemma 1-2. gearch for swap matches of pattefhin arbitrary text. As
an example, suppose a string= aabcddbadca. The trace
of the deterministic finite automatal/ is:

({0}, aabeddbadea) +Far ({0, 1}, abeddbadea)
Far ({0,1}, beddbadca)
Far ({0,1,2}, cddbadcea)
Fvo ({0, 3} ddbadca)
Far o ({0,4}, dbadca) Match
Far ({0}, badca)
Far ({0,1'}, adca)
— Far ({0,1,2}, dea)
Far ({0 3/} ca)
Far ({0,4},a) Match
Fvo ({0,1},¢)

The trace locates 2 matches of the swap versions of pattern
P. The first occurrence ends at position 5 of pattérn
(substringzbed) and the second ends at position 10 (substring
badc). The occurrences are detected (accepted) by final state.

We also note that each symbol of the input texivas
read only once (linear search phase).

Fig. 2. Transition diagram of automatav,, from Lemma 1

V. COMPLEXITIES

' o In this section, we present the resulting space and time
Fig. 3. Transition diagram of automatcH;, ., from Lemma 1 complexities of our algorithm. But first, we present a
proof on the number of all possible swapped versions of a

TABLE |
TRANSITION TABLE OF DETERMINISTIC AUTOMATON M ACCEPTING
LANGUAGE L)s = { m(abed) } FOR ALL SWAP PERMUTATIONST

element and thus the recurrent formuig, for finding the
swapped versions, i85(n) = F(n +1).

[|
o7 {0“1} {0b1/} {8} {g} Theorem 6:Given a patternP of size m, Algorithm 1
10,17 (0.1 [{0,727 | {0,277 o): constructs a non-deterministic finite automafdn accepting
{0,/1/} {0, 1,2} {071:} {0} {0}/ languageL,; = { «(P) } for all swap permutationg, in
{?(7)127€} {({)E)lii} {3071/1 g} {0(7)3} {%0?}} time O(m)
{0.1.2) | {0.1} [{0.1".2} [{0,2.3} [{0.7} . .
10,31 10,11 10,17} {0} 10,4} Theorem 7:Given a patternP of sizem and alphabekL,
{0,3"} {0,1} {0,177} {0,4} {0} Algorithm 2 constructs a non-deterministic finite autonmato
Eg, ;;g% {({),Olﬁ} {éoi}/g} % Egﬁ M, accepting languagé; = { w.w(P) } for all w € %*
{0,47 0.1 0,17 {07 o7 and all swap permutations, in time O(m).

Theorems 6-8 are trivial to prove. Algorithms 1-2
construct2m states and define at most two transitions for
each state by reading the pattern from left to right.

Theorem 8:The space complexity of the deterministic au-
tomatonM,, obtained by subset construction on automaton
Fig. 4. Finite automator/ accepting languag€,, = { m(abed) } for Mna constructed by Algorithm 2 over patter of sizem,

all swap permutations:. is O(2™).

Proof: The language accepted by automatdf, g
a,b,c,d (1+\/5)771+1_(1_\/5)771+1

consists ofk = — strings (Lemma 1
e a M b D¢) , ~~ and 5). Aqtoma_tonMnd accepts the same language as an
~ ~/ Aho-Corasickfinite automaton (see [1], [18]) constructed
over a finite set of string$ = {p1,p2,...,px}, Wherep;,
p . . y e ,, 1 < i < k, are all possible, distinct swapped versions of

P. The space complexity of the deterministic Aho-Corasick
, - _ finite automaton iV (as) (see [18]), wherex is the size of
Fig. 5. Finite automator\/ accepting languag€,; = { z.w(abed) } he alphab h £l hs of all stri -
for all swap permutations and allz € X*. the alphabet angd the Su_m O e_ngt sora strlr_lgs '_n st
In our case = km, which indicates exponential size.
[]
patternP which will aid us on proving the space complexity. 1h€orem 9:The searching phase of the deterministic au-
tomatonM;, obtained by subset construction on automaton
Lemma 5:Given a string z of size n > 2, the _Mnd constructed by Algorithm 2 over patteid of sizen,
number of distinct swapped versions of is exactly 1S O(1)- . L
A+VvB) " —(1-vE)" ! Proof: This is a property of deterministic automata
P 2“?1\/58 ' h AL 1 serving as pattern matchers. The input text is read from left
q 3roo ' uppose W;[aved %patte 1...n t:i k]) to right, symbol by symbol. For each symhgla transition
Z? . haUtfm:taM”“’ M" an n—lb co(;]structe Y from some state; to a stateg, is taken, according to the
gorithm 1. Automatonl,,, Is constructed over pattern .o nqition function (6(g1,a) = g2). The automaton detects

gi con 1], AFLI over: patter?P[fl L”] an(il M"ﬁlldoverr] occurrences of swapped versions of the pattern inside the
[1...n —1]. From the proof of Lemma 1 it holds that input text by a transition to the final state. |
the languages accepted By, 1, M, M, areLy;, _,

{ #[P[1...n).P[n+1],7(P[l...n — 1]).P[n + 1].P[n] }: VI. CONCLUSIONS AND FUTURE WORKS
7

Ly, ={=[P[l...n] } and Ly, _, = {x[P[l...n —1] In this paper we have presented a new, efficient algorithm
respectively. for the Swap Matching problem on short patterns with
This means thatLy, ,, | = [La, |+|La, |, Whichforms 3 searching phase running in linear time. The algorithm
a recurrent formula for generating Eibonacci sequence constructs a non-deterministic finite automaton which can
(see [8]). Then-th element of a Fibonacci sequence carpe transformed to a deterministic one, serving as a pattern
be calculated usin@inet's formula[19], which is F'(n) = matcher. Our method is based on preprocessing the pattern,
w an operation carried out only once at the beginning.
Forn = {,3,4, Binet’s formula yields the following results: ~ The main advantage of the method is that the preprocess-
F(2) =1, F(3) =2andF(4) = 3. The number of swapped ing is done only once at the beginning and the constructed
versions of a patter® of size 2 and 3 is 2 and 3, respectively.automaton can be used as a pattern-matcher for arbitrary
The sequence of the number of swapped versions of pattemany texts without the need of preprocessing the pattern
of size 2,3, ...n is the Fibonacci sequence shifted by oneagain. The drawback of this method is the high (exponential)

Fig. 6. Transition diagram of deterministic finite automatohaccepting languagé ;s = { abed, abdc, acbd, bacd, badc }.

space complexity, which limits this method only for shorf12] J. E. Hopcroft, R. Motwani, J. D. Uliman. Introduction &utomata
patterns.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

A. Aho, M. Corasick. Efficient string matching: an aid tdbographic
search.Communications of the ACMolume 18 (6), pages 333-340,
1975

A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein and N. Lewen-
stein. Pattern Matching with Swap&EE Symposium on Foundation
of Computer Sciencgages 144-153, 1997

A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein and N. Lewen-
stein. Pattern Matching with Swap¥urnal of algorithmsvolume 37
(2), pages 247-266, 2000

A. Amir, R. Cole, R. Harihan, M. Lewenstein, and E. Porate@ap
Matching. Information and Computatigrvolume 181 (1), pages 57—
74, 2003

A. Amir, G. M. Landau, M. Lewenstein and N. Lewenstein. Eifint
special cases of pattern matching with swdpfrmation Processing
Letters volume 68 (3), pages 125-132, 1998

M. Campanelli, D. Cantone and S. Faro. A New Algorithm for
Efficient Pattern Matching with Swapsroceedings of the 20th
International Workshop on Combinatorial Algorithn2009

D. Cantone and S. Faro. Pattern matching with swaps fart gladterns

in linear time. Software Seminar Conference 200®lume 5404 of
Lecture Notes in Computer Science, pages 255-266, 2009
Chandra, Pravin and Weisstein, Eric W. Fibonacci
Number. From MathWorld-A Wolfram Web Resource
http://mathworld.wolfram.com/FibonacciNumber.html

V. Chvatal, D. A. Klarner and D. E. Knuth. Selected comlbaraal
research problem§echnical Report STAN-CS-72-2%anford Uni-
versity, 1972

Crochemore, M., Hancart, Ch. Automata for Matching Ra#igeIn:
Vol 2: Linear Modeling: Backgroung and Application. Handloof
Formal Languages.

Crochemore, M., Rytter, Wlewels of StringologyWorld Scientific,
New Jersey, 1994.

(23]

[14]

[15]

[16]

[17]

18]
[19]

theory, languages and computation, 2nd Editid@M SIGACT News
Volume 32, 2001

C. S. lliopoulos and M. Sohel Rahman. A new model to solvapw
matching problem and efficient algorithms for short patte8wftware
Seminar Conference 2008lume 4910 of Lecture Notes in Computer
Science, pages 316-327, 2008

B. Lewin, Genes for sma: Multum in parv€&ell, volume 8, pages
1-5, 1995

Melichar, B., Holub, J., Polcar, Jext Searching Algorithm#wvailable
on: http://stringol ogy. org/ at hens/, release November
2005, 2005.

S. Muthukrishnan. New results and open problems relétedon-
standard stringologyCombinatorial Pattern Matchingvolume 937 of
Lecture Notes in Computer Science, pages 298-317, 1995

M.O. Rabin, D. Scott. Finite automata and their decisgraoblems.
IBM Journal of Research and Development\®lume 3, pages 114—
125, 1959

B. Smyth. Computing Patterns in Stringsddison-Weslgy2003
Weisstein, Eric W. Binets Fibonacci Number For-
mula. From MathWorld—-A Wolfram Web Resource
http://mathworld.wolfram.com/BinetsFibonacciNumberForanim|

