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Abstract— A functional adaptive control for nonlinear
stochastic Multi-Input Multi-Output (MIMO) systems is pre-
sented. A nonlinear system is modelled by a MultiLayer
Perceptron (MLP) neural network. Parameters of the model
are estimated by the extended Kalman filter (EKF). One of
the key problems connected with neural network is selection
of its structure. In order to avoid this problem, an on-line
algorithm for dynamic structure optimization of the MLP
network is proposed. Controller design is based on bicriterial
dual approach that uses two separate criteria to introduce
opposing aspects between estimation and control; caution and
probing. The proposed approach is compared with two adaptive
non-dual controllers. The quality of the proposed functional
adaptive controller is illustrated in a numerical example.

I. I NTRODUCTION

In the last decade, functional adaptive control system
design for nonlinear systems has attracted a great deal of
attention [1], [2], [3], [4]. The title ’Functional adaptive
control’ refers to the fact that the type of model uncertainty
is connected with functional uncertainty, where the nonlinear
functions and parameters of the system are unknown.

Modelling of unknown nonlinear functions that describe
system can be approached via functional approximators
represented for example by diverse types of neural networks
[5] (radial basis function (RBF) or multilayer perceptron
(MLP)). One of the most difficult problems connected with
neural network is selection of its structure, i.e. the number
of hidden layers and the number of neurons in them. Either
it is possible to choose a static structure before controller
is designed or to use a dynamic structure optimization
algorithm. Utilization of dynamic structure allows to set
optimal structure of the neural network and so to decrease
overall computational demands of the designed controller. In
the above mentioned works only a static structure is used.

Typically, functional adaptive control should simultane-
ously optimize control performance and reduce uncertainty
of the system. In contrast to methods that use well known
certainty equivalence principle, functional adaptive control
system generates action signal representing compromise be-
tween control and identification. In addition, it is possible
to avoid time consuming off-line system identification. Typ-
ically, such methods are either adaptive critic [4] or dual
control methods [6].

It should be pointed out that the above mentioned results of
functional adaptive control are limited to single-input single-
output (SISO) systems. However, many control systems are
multivariable [7], [8], [9]. The controller design for multi-
input multi-output (MIMO) systems is more difficult and
very different from design for SISO systems. The design

techniques for SISO systems cannot be simply extended to
MIMO systems in general. Hence, problems of representa-
tion, identification and control of MIMO systems are more
challenging than in case of SISO systems. Even in case of
linear MIMO systems with known parameters a task of con-
trol design is difficult, especially due to existing coupling be-
tween individual input/output channels. The control problem
is more complicated in case of nonlinear stochastic systems
with uncertainties about nonlinear functions describing the
systems. It is a task of the functional adaptive control for
MIMO systems. However, this area of functional adaptive
control has been addressed marginally up to now.

The first attempt to deal with the theoretical aspects of
the representation and control of nonlinear multivariable
dynamical systems is presented in [7]. But an intensive
off-line training of a neural network is needed. In [10] a
comparison of neural networks and gaussian process (GP)
models is performed. The certainty equivalence principle is
used in control design and so there is no reduction of future
uncertainties about a model. Further, the GP techniques re-
quires off-line identification. In [8], the technique of multiple
models is used for MIMO control design, but only system
with no disturbances is considered. The functional adaptive
control for the multivariable discrete-time stochastic systems
has not been studied yet.

Hence, main goal of the paper is to design functional
adaptive control for non-linear stochastic MIMO systems
where unknown functions of a system are modelled by a
MLP network, and combine it with a dynamic structure
algorithm of neural network.

The paper is organized as follows. In Section 2 the prob-
lem of dual stochastic adaptive control for non-linear MIMO
systems is formulated. Section 3 concentrates on MIMO
system identification by neural networks. The derivation
of the bicriterial dual controller is shown in Section 4.
In Section 5 the proposed approach is demonstrated in a
numerical example.

II. PROBLEM STATEMENT

A dynamical system to be controlled is the nonlinear time-
invariant stochastic discrete-time system withm inputs and
n outputs given as

yk = f(xk−1) + G(xk−1)uk−1 + ek, (1)

whereuk = [u(1)
k , . . . , u

(m)
k ]T are inputs of the system,yk =

[y(1)
k , . . . , y

(n)
k ]T denotes outputs of the system,f(xk−1) =

[f (1)(xk−1), . . . , f (n)(xk−1)]T is the n-dimensional vector



of unknown nonlinear functions, further

G(xk−1) =




g(11)(xk−1) . . . g(1m)(xk−1)
...

. ..
...

g(n1)(xk−1) . . . g(nm)(xk−1)


 (2)

is then×m matrix of unknownnonlinear functions,xk−1 ,
[yT

k−p, . . . ,y
T
k−1,u

T
k−1−s, . . . ,u

T
k−2]

T is the state of the sys-

tem andek = [e(1)
k , . . . , e

(n)
k ]T is the vector of the additive

noises. It is required that the outputyk follows the chosen
reference signalrk = [r(1)

k , . . . , r
(n)
k ]T . It is assumed that

the following conditions are satisfied.
Assumption 1:Parametersp ands are known.
Assumption 2:The system has a globally uniformly

asymptotically stable zero dynamics [11] and nonlinear func-
tions in the matrixG(xk−1) are bounded away from zero
for all xk.

Assumption 3:The white noise{ek} has Gaussian dis-
tribution with zero mean and covariance matrixΞΞΞ =
diag

(
σ

(i)
e

)
, whereσ

(i)
e are known variances of thee(i)

k for
i = 1, . . . , n.

Assumption 4:The relative order of the system is the
same for all outputs.

The goal of the control is to design the functional adaptive
dual controller for the system (1) in such a way that the
output of the systemyk will follow appropriate reference
signal rk chosen by designer, in other words to derive the
control law by minimization of properly chosen criterion.

Design of the functional adaptive control will be made
following way. In terms of solution design is necessary to
deal with suitable representation of the MIMO system (1) by
neural networks and controller design. The controller design
will be based on the bicriterial dual control approach [6].
Attention will be focused on the MLP networks, because they
can approximate nonlinear function at the same accuracy as
RBF networks with significantly less number of neurons for
real time applications. One issue of system identification
by MLP networks is estimation of network parameters.
In this case, the parameter estimation represents nonlinear
optimization problem. It is known that parameter estimation
methods are based either on minimization of prediction error
[12] or on nonlinear filtering methods [13], [1], [14]. Next
key problems joined with neural networks is selection of the
neural network structure. In order to avoid this problem, an
on-line dynamic structure algorithm of the MLP network is
proposed.

III. M ODEL OF THEMIMO SYSTEM BY NEURAL

NETWORKS

Firstly, a suitable model of the system (1) have to be
specified. MIMO systems are mostly characterized by high
dimension of the system state. Hence, MLP network is
suitable type of neural network for modelling the MIMO
system [7].

An approximation of the system (1) can be made in various
ways [7]. Chosen alternative uses two neural networksf̂ (i)

and ĝ(i·) wherei = 1, . . . , n. Each networkf̂ (i) has single

output and each network̂g(i·) hasm outputs. Total number of
the networks is2n. Although some difficulties are connected
with this technique, as design of the2n neural networks and
nonlinear estimation of their parameters, this model will be
preferred further.

The model of the system is described as

ŷk = f̂(xk−1,w
f
k , cf

k) + Ĝ(xk−1,w
g
k, cg

k)uk−1, (3)

where theith output of the model is given as

ŷ
(i)
k = f̂ (i)(·) +

m∑

j=1

ĝ(ij)(·)u(j)
k−1, for i = 1, . . . , n (4)

f̂ (i)(cfi

k ,xa
k−1,w

fi

k ) = (cfi

k )T φfi(xa
k−1,w

fi

k ), (5)

ĝ(ij)(cgij

k ,xa
k−1,w

gi

k ) = (cgij

k )T φgi(xa
k−1,w

gi

k ), (6)

wherexa
k−1 = [xT

k−1 , 1]T is the state vector augmented
by constant bias input,cfi

k and cgij

k are nfi, resp. ngij

dimensional vectors of the unknown parameters of the output
layer of the networkf (i), resp.g(ij), wfi

k andwgi

k are vectors
of the unknown parameters of the hidden layer of theith

network with length(n+p+1)nfi, resp. (n+p+1)ngij .
Scalar functionsφfi(·) and φgi(·) are sigmoidal activation
functions of the neurons in the hidden layers.

Equations (3)–(6) describe the model of the system (1).
Before an application of an estimation method for the
parameters estimation, a suitable estimation model of the
identified system have to be defined. First, all parameters of
the model (3) will be included in one parameter vector

Θk =
[
(cf1

k )T , (wf1
k )T , (cg11

k )T , . . . , (cg1m

k )T , (wg1
k )T , . . . ,

(cfn

k )T , (wfn

k )T , (cgn1
k )T , . . . , (cgnm

k )T , (wgn

k )T
]T

,

(7)

where length of the vectorΘk is denotedθn.
The following two subsections concentrate on searching

the optimal structure and the parameter values of the MLP
networks representing parameters of the model (3)–(6).

A. Parameter estimation

The parameters of the networks are considered as t-inva-
riant in time

Θk+1 = Θk. (8)

Further, it is assumed that the system (1) can be approxi-
mated with sufficient precision by a chosen neural network.
Then, it is possible to obtain the measurement equation from
(1) by rewriting it as

yk = hk(Θk,xa
k−1,uk−1) + ek, (9)

where

hk(·) = f̂(cf
k ,xa

k−1,w
f
k) + Ĝ(cg

k,xa
k−1,w

g
k)uk−1, (10)



and

wf
k = [(wf1

k )T , . . . , (wfn

k )T ]T ,

wg
k = [(wg1

k )T , . . . , (wgn

k )T ]T ,

cf
k = [(cf1

k )T , . . . , (cfn

k )T ]T ,

cg
k = [(cg11

k )T , . . . , (cg1m

k )T , . . . , (cgn1
k )T , . . . , (cgnm

k )T ]T .
(11)

Equations (8) and (9) define the estimation model of
the system (1). Unfortunately, dependence ofŷk on the
parameters of the neural network is nonlinear in (3)–(6).
Therefore, it is advisable to exploit nonlinear estimation
method for finding the unknown parameters. There are
many optimization methods developed for training the MLP
networks [12], [1]. The methods based on non-linear filtering
belong among the most promising and enduring of enhanced
training methods because they are practical, computationally
moderate and they represent an effective alternative to op-
timization methods as quasi-Newton, Levenberg-Marquardt,
or conjugate gradient techniques [15]. The well-known ex-
tended Kalman filter (EKF) represents probably the most
attractive approach from non-linear filtering due to the above
mentioned characteristic.

The pdfp(Θk|Ik) is given as

p(Θk|Ik) = N
{
Θk : Θ̂k,Pk

}
, (12)

where

Θ̂k = Θ̂k−1 + Kk [yk − ŷk] , (13)

Pk = Pk−1 −Kk∇∇∇kPk−1, (14)

Kk = Pk−1[∇∇∇k]T
[∇∇∇kPk−1[∇∇∇k]T + ΞΞΞ

]−1

,
(15)

where∇∇∇k represents the first derivative of the functionhk(·)
with respect to parametersΘk and has the following form

∇∇∇k , ∂ĥ(Θ)
∂Θ

∣∣∣∣∣
Θ=Θ̂k

=




∇∇∇(1)
k

. . . 0
∇∇∇(i)

k

0
. ..

∇∇∇(n)
k




,

(16)

where

∇∇∇(i)
k =

[
∇∇∇fi

k , ∇∇∇gi1
k u

(1)
k−1, . . . , ∇∇∇gim

k u
(m)
k−1

]
. (17)

Non-diagonal parts in (16) are equal to zero because of the
independency of corresponding derivatives on elements of
(7). This fact results from the equation of the model (3)–(6)
and definition of the vector of the unknown parametersΘk

in (7).
Thus, all information necessary for the control action can

be collected on-line at every stepk and the neural control
scheme with static structure of the neural network can be
accomplished. Now, the control scheme will be extended
about dynamic structure adaptation process.

B. Dynamic structure optimization

The proposed approach is based on pruning insignificant
connections in the network and it is a special case of the
algorithm proposed in [16], where more details about the
algorithm derivation can be found. Pruning methods are
generally based on sufficiently large networks initialization.
Then the insignificant connections or neurons are pruned
from the networks by setting the corresponding parameter
value to zero. The pruning algorithm should be started after
stabilization of the mean square error of the predicted output
εk = ||yk−ŷk|| which indicates that the network parameters
have been set. This is measured by the following difference

∆k =

∣∣∣∣∣
1

k + 1

k∑

i=0

ε2
i −

1
k

k−1∑

i=0

ε2
i

∣∣∣∣∣ . (18)

If the difference ∆k is less than or equal to a chosen
threshold∆0 then the pruning process can be started.

The significancy of thes-th parameter of the network can
be derived as

Ei ≈ θ̂2
s

Ps
, (19)

where θ̂s andPs is thes-th term of the vector̂Θk+1, resp.
the s-th diagonal term of the matrixPk+1.

As the final step, the parameters that should be pruned in
the stepk must be chosen. For the sake of simplicity index
k + 1 will be omitted in Θ̂k+1. It is suitable to sort the
elements of the vector̂Θ according to their significancy as

Θ̂ = [θ̂π1, θ̂π2, . . . , θ̂πθn], (20)

whereθ̂π1 is parameter with the lowest significancyEi.
A criterion for pruning connections from the network is

set as

T=
1

k + 1
(Θ̂ΘΘ[1,πN ]−Θ̂ΘΘ)T P−1(Θ̂ΘΘ[1,πN ]−Θ̂ΘΘ), πN =1, . . . , θn

(21)
whereΘ̂[1,πN ] = [0, . . . , 0, θπN+1, θπN+2, . . . , θπθn]. If the
valueT will be less than the chosen thresholdT0, then the
connections will be pruned. The strategy is based on finding
such sequence of the parameters that their pruning causes
only a minor error in the model. For that reason, a sequential
computation of the criterion (21) from the parameter with the
lowest significancy to the most significant is performed until
the conditionT < T0 is satisfied.

Now, it is possible to obtain both the estimate and the
covariance matrix of the parameters of the system at every
step of estimation algorithm which are necessary for compu-
tation of a control actionuk. Due to chosen neural network
structure, the covariance matrixPk+1 can by written in a
block diagonal form as

Pk+1=




P(1,1)
k+1

. . . 0
P(i,i)

k+1

0
. . .

P(n,n)
k+1




, (22)



where

P(i,i)
k+1=




Pfifi

k+1 Pfigi1
k+1 . . . Pfigim

k+1

Pgi1fi

k+1 Pgi1gi1
k+1 . . . Pgi1gim

k+1
...

...
...

...
Pgimfi

k+1 Pgimgi1
k+1 . . . Pgimgim

k+1




(23)

is an individual sub-matrix having dimensions given by
numbers of parameters relevant to the neural networksf̂ (i),
ĝ(ij).

IV. B ICRITERIAL DUAL CONTROL DESIGN

In this section functional adaptive control for the system
(1) will be designed using the idea of bicriterial dual control
(BDC). It can be mentioned that basic idea of bicriterial
approach is based on subsequent minimization of two critera.
These criteria represent two opposite goals of the dual
control: identification and control.

The first criterion evaluating the control quality is de-
scribed as

Jc
k = E

{
(yk+1 − rk+1)T Qk+1(yk+1 − rk+1)+

uT
k Sk+1uk)|Ik

}
,

(24)

where E{·|·} is conditional expectation operator,Qk+1 is
n × n positive semidefinite matrix,Sk+1 is m × m posi-
tive definite matrix andIk describes available information
segment until timek.

Remark 4.1:The arguments of nonlinear functionsf , G,
f̂ and Ĝ will be omitted in the following derivation for
abbreviation of notation.
By substituting (1) into (24) the criterionJc

k can be rewritten
as

Jc
k =E

{
(f + Guk + ek − rk+1)T Qk+1×

(f + Guk + ek − rk+1) + uT
k Sk+1uk|Ik

}
,

(25)

where the functionsf , G should be regarded as random
variables. Subsequent multiply and partially application of
mean operator over information segmentIk one can obtain

Jc
k =E{fT Qk+1G}uk + uT

k E{GT Qk+1f}+
uT

k E{GT Qk+1G}uk − rT
k+1E{Qk+1G}uk−

uT
k E{GT Qk+1}rT

k+1 + uT
k Sk+1uk + c,

(26)

wherec represents all terms ofJc
k that are independent of

uk. They can not influence value of the criterion and need
not be considered further.

Now, it is possible to determine control actionuc
k as

extreme of criterionJc
k

∂Jc
k

∂uk
=E{GT Qk+1f}+E{GT Qk+1G}uk−

E{GT Qk+1}rk+1+Sk+1uk =0.

(27)

In the remaining terms in (27) mean operator can be applied
by using well known relationE{aT Qk+1a} = âT Qk+1â+
E{[a − â]T Qk+1[a − â]}. Then, the control actionuc

k can
be written as

uc
k =[Sk+1 + ĜT Qk+1Ĝ + νννGG

k+1]
−1×

[ĜT Qk+1rk+1 − ĜT Qk+1f̂ − νννGF
k+1],

(28)

where

νννGG
k+1 = Qk+1∇∇∇G

k+1P
G
k+1(∇∇∇G

k+1)
T is m×m matrix

νννGF
k+1 = Qk+1∇∇∇G

k+1P
GF
k+1(∇∇∇F

k+1)
T is vector with lengthm.

(29)

MatricesPG
k+1 andPGF

k+1 can be formed from the elements
of the matrix Pk+1 described by (22) and have the form
given by (30) and∇∇∇G

k+1, resp.∇∇∇F
k+1 can be obtained from

(16) as

∇∇∇F
k+1 =

[
∇∇∇f1

k+1, . . . , ∇∇∇fm

k+1

]T

,

∇∇∇G
k+1 =




∇∇∇g11
k+1 . . . ∇∇∇g1m

k+1 0
. . .

0 ∇∇∇gm1
k+1 . . . ∇∇∇gmm

k+1


 .

(31)

It can be noted that (28) respects uncertainties in knowledge
of the unknown functions and it is equal to cautious control
as one of integral component of dual control.

The second component of control law should evaluate
estimation quality and it is given by criterion

Ja
k = −E

{
(yk+1 − ŷk+1)T Wk+1(yk+1 − ŷk+1)|Ik

}
,

(32)
where Wk+1 is n × n positive semidefinite matrix. By
substituting (1) and (3) in (32), the following relation can
be obtained

Ja
k =−E

{
(f+Guk + ek)T Wk+1(f+Guk + ek)−
(f + Guk + ek)T Wk+1(f̂ + Ĝuk)−
(f̂ + Ĝuk)T Wk+1(f + Guk + ek)+

(f̂ + Ĝu)T Wk+1(f̂ + Ĝuk)|Ik

}
.

(33)

After multiplying and omitting the terms independent ofuk

a suitable form for optimization is

J̄a
k =−E

{
uT

k GT Wk+1f+uT
k GT Wk+1Guk + fT Wk+1×

Guk − fT Wk+1 × Ĝuk − uT
k GT Wk+1Ĝuk−

uT
k GT Wk+1f̂− f̂T Wk+1Guk−uT

k ĜT Wk+1f−
uT

k ĜT Wk+1Guk + f̂T Wk+1Ĝuk+

uT
k ĜT Wk+1f + uT

k ĜT Wk+1Ĝuk|Ik

}
.

(34)

The bicriterial controluk is then given as

uk = argmin
uk∈Ωk

J̄a
k . (35)

Minimization of J̄a
k is performed over the regionΩk which is

specified byuc
k and its surrounding symmetrically distributed

around the cautious control asΩk = [uc
k − δδδk,uc

k + δδδk],
whereδδδk = [δ(1)

k , . . . , δ
(m)
k ]T . The choice of the parameter

δδδk stems from reasoning that it is necessary to enrich the
cautious control with probing proportional to uncertainty of
the unknown functionsf , G in the controlled system (1). A
common choice [6] forδδδk is

δδδk = ηηηtr(Pk+1), η(i) > 0 ∀ i, (36)



PGF
k+1 =




Pf1g11
k+1 . . . Pf1g1m

k+1
...

.. .
...

Pfmgm1
k+1 . . . Pfmgmm

k+1


 , PG

k+1 =




Pg11g11
k+1 . . . Pg11g1m

k+1
...

...
... 0

Pg11g12
k+1 . . . Pg1mg1m

k+1

. . .
Pgm1gm1

k+1 . . . Pgm1gmm

k+1

0 ...
...

...
Pgmmgm1

k+1 . . . Pgmmgmm

k+1




(30)

whereηηη is m dimensional vector, that provides the amplitude
of the probing signal and the matrixPk+1 describes a degree
of uncertainty of the parameter estimate conditioned byIk

and can be obtained using a nonlinear estimation method.
Relation (35) can be rearanged and written as

uk = uc
k + δδδk sign

[
J̄a

k (uc
k − δkδkδk)− J̄a

k (uc
k + δkδkδk)

]
. (37)

Now, evaluation of the term in the square brackets remains
to be performed. This term can be obtained by substituting
(uc

k +δδδk), resp.(uc
k −δδδk) for uk in (34). Using elementary

adjustments, the following form can be obtained

J̄a
k (uc

k − δδδk)− J̄a
k (uc

k + δδδk) = 4δδδT
k E

{
(G− Ĝ)T Wk+1×

(f − f̂) + (G− Ĝ)T Wk+1(G− Ĝ)uc
k|Ik

}
.

(38)

Now, it is possible to reuse the introduced relations (29).
By application of the mean operator and using assumption
Qk+1 = Wk+1, the equation (38) has form

J̄a
k (uc

k − δδδk)− J̄a
k (uc

k + δδδk) = 4δδδT
k (νννGF

k+1 +νννGG
k+1u

c
k). (39)

Final equation of functional adaptive controller for MIMO
system based on bicriterial approach can be obtained as
combination of (27), (37) and (39) and it possible to write

uk = uc
k + δδδksign

[
δδδT

k (νννGF
k+1 + νννGG

k+1u
c
k)

]
. (40)

V. NUMERICAL EXAMPLE

The discrete-time nonlinear stochastic system with two
inputs and two outputs described by the following equations
is considered

y
(1)
k =

0.7y
(1)
k−1y

(1)
k−2

1 + (y(1)
k−1)2 + (y(2)

k−2)2
+

0.1u
(2)
k−1

1 + 3(y(1)
k−2)2 + (y(2)

k−1)2
+

+ u
(1)
k−1 + 0.25u

(1)
k−2 + 0.5u

(2)
k−2 + e

(1)
k ,

y
(2)
k =

0.5y
(2)
k−1 sin y

(2)
k−2

1 + (y(2)
k−1)2 + (y(1)

k−2)2
+ 0.5u

(2)
k−2 + 0.3u

(1)
k−2+

+ u
(2)
k−1

(
0.1u

(2)
k−2 − 1.5

)
+ e

(2)
k ,

wherexk−1 = [yk−1,yk−2,uk−2] is the state of the system,
{e(1)}, {e(2)} are mutually independent Gaussian noises

with zero means and variances(σ(1)
e )2 = (σ(2)

e )2 = 0.005.
Reference signals are chosen as

r
(1)
k =0.55 sin

2πk

30
+ 0.55 sin

2πk

20
,

r
(2)
k =0.75 sin

2πk

50
+ 0.75 sin

2πk

10
.

(41)

Initial values of the inputs and the outputs are zero. As it
was mentioned in Section 2, each of the nonlinear functions
f (i), g(i·) for i = 1, . . . , n is modelled by individual neural
network. Model of the system is composed of four neural
networks. Each of the neural networks is perceptron neural
network with one hidden layer containing 20 neurons for
each functionf̂(·) and 15 neurons for each functionĝ(·). The
initial parameters are generated from uniform distribution
on the interval < −0.1; 0.1 > and covariance matrix is
P0 = 10I. Finally, parameters of the BDC are chosen as
follows: Wk+1 = Qk+1 = I, Sk+1 = 0.01I and ηηηT =
[0.00002 0.00004]. Parameters of the pruning algorithm are
chosen as∆0 = 0.005 andT0 = 0.00001.

Influence of dynamic structure optimization on the control
quality and time demands is shown in Table 1. The BDC with
dynamic structure optimization is compared with BDC with-
out utilization of the dynamic structure algorithm. Criterion
for comparison is set as the mean of sums of square errors
of the referencerk and the system outputyk over 100 trials
and 300 steps per trial:

V̂ =
1

100

2∑

i=1

100∑

j=1

300∑

k=1

(y(i)
kj − r

(i)
kj )2. (42)

Utilization of the dynamic structure algorithm brings com-
parable control quality and significantly lower computational
demands in comparison with the static structure. The number
of the parameters decreases by 80 % and computational
demands decrease by 20 % in the case of dynamic structure
optimization. It should be noted that the size of reduction
grows with system state dimension and control horizon in
general.

Results of the simulation are illustrated in Figures 1 and 2.
In Figure 1 the tracking of the chosen reference signals for
both outputs of the systemy(1)

k andy
(2)
k is shown. It is clear

that quick adaptation of the parameters of the model occurs
up to the 100th step. Very good control quality is achieved
after this adaptation period. The goal of the control, i.e. the



TABLE I

INFLUENCE OF DYNAMIC STRUCTURE ON QUALITY OF THE CONTROL

SYSTEM AND TIME DEMANDS.

V̂ cov(V̂ ) nθ time [s]

BDC stat 27.8 15.8 590 57.2
BDC dynam 26.5 18.2 112 45.5

tracking of the chosen reference signalsr
(1)
k and r

(2)
k , is

fulfilled. Progress of number of the network parameters in
time is illustrated in Fig. 2. Reduction in number of neurons
in the neural network is obvious.
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Fig. 1. Typical outputs of the system controlled by bicriterial dual controller
with dynamic structure (blue line) and following chosen reference signals
(red line).
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Fig. 2. Progress of the neural network parameters in time.

VI. CONCLUSIONS

The bicriterial dual controller for non-linear stochastic
MIMO systems with dynamic structure of perceptron neural
network was presented. The model of the system is given by
the multi-layer perceptron network. The extended Kalman
filter was applied for the on-line parameter estimation of the
derived estimation model. In order to avoid the problem with
choice of the neural network structure, an on-line dynamic
structure optimization algorithm of the network was utilized.
Then the bicriterial approach to dual control design was

used. The proposed dual adaptive controller with dynamic
structure has lower computational demands and comparable
control quality in comparison with controller that utilizes
static structure of the neural network.
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