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Abstract— Since Markowitz published his pioneer work [15],
the performance of a portfolio of assets has been measured
by its expected return and risk. However, his model had some
drawbacks. Transaction costs, indivisible assets and assymmet-
rical quantitation of risk were not included into his investment
model.

We deal with optimal investment problem with integer alloca-
tions, transactions costs and Conditional Value at Risk measure.
The underlying distribution is only estimated. Hence, stability
analysis with respect to some changes of the distribution is
necessary. We propose contamination techniques, which enable
us to quantify the change in optimal value, if the underlying
distribution is contaminated by another distribution. They
provide a way how to construct contamination bounds for
optimal value, which quantify the effect of considered change
in probability distribution.

We apply introduced investment model to real data of 30
Czech investment funds. We study in-sample and out-of-sample
performance of portfolios with different risk aversions and
apply contamination techniques to study the behaviour of the
risk before and during distress.

I. INTRODUCTION

A. Mean-risk models and multiobjective optimization

Due to the pioneer work of Harry Markowitz [15], the
performance of a portfolio of assets is measures not only by
its expected return but also by its risk. Searching the optimal
portfolio leads to multiobjective (biobjective) optimization
problem where we maximize the expected return (minimize
expected loss) and minimize the risk at the same time.
Markowitz used variance of the portfolio as the risk measure.
Many risk measures have been introduced and studied since
then: Mean absolute deviation (MAD) [13], Value at Risk
(VaR), Conditional Value at Risk (CVaR) [17], drawdown
measures [18] and many others. In past years, VaR became
very popular risk measure and is nowadays widely used
in practice even though it is not adequate risk measure,
cf. [22]. It lacks subadditivity which is crucial for correct
diversification of our investments. Conditional Value at Risk
(CVaR) is often proposed as an alternative for VaR. CVaR
is usually defined as the conditional mean of losses on
condition that we are beyond VaR. Since this definition leads
to some inaccuracies, more accurate definition is needed
for general loss distributions, see [17]. If CVaR is defined
correctly, it fulfils axioms of coherent risk measures [5]
which are accepted by theorists as well as by practitioners.
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Minimizing risk R(x) and maximizing expected return
E (x) at the same time under some common constraints
X ⊂ IRn on portfolio composition leads to multiobjective
(biobjective) optimization problems. We are looking for
efficient solutions, i.e. solutions ˆx∈ X such that there is no
elementx∈ X with R(x) ≤ R(x̂) and E (x) ≥ E (x̂) with at
least one strict inequality. There are two main approaches
for solving such problems, both leading to single objective
problems and under mild condition to efficient solutions,
see [16]: aggregate function (weighted sum) approach

min
x∈X

[

− (1−ρ)E (x)+ ρR(x)
]

for someρ ∈ (0,1), andε-constraint approach

min
x∈X

R(x)

E (x) ≥ rmin

with rmin such that{x∈ X : E (x) ≥ rmin} is nonempty.
In the case of multiobjective linear programming, there is

even known relation between both approaches. Using linear
programming duality we are able to obtain explicit relation
between weighting coefficients andε-bounds, i.e. betweenρ
and rmin, cf. [12].

For Markowitz model, both approaches lead to quadratic
programming problems. New risk measures are proposed in
order to lead to linear programming formulation for discrete
random variables which is easier to solve than quadratic
problems.

However, introducing integer restriction to some variables
destroys convexity of the underlying problem and makes it
difficult to solve. The aggregate function approach still leads
to efficient solutions, but we are not able to obtain all them.
Hence, we only approximate the efficient frontier which
contains mean returns and corresponding risks for efficient
solutions. Why integer variables are necessary in real finan-
cial applications? They help us model indivisible assets (we
can buy only integral number of assets), transaction costs,
cardinality constraints (restrictions on maximal number of
kinds of assets), logical relations (if you buy certain asset,
you must not buy other) etc.

B. Stochastic programming

Mean-risk investment models can be seen as a special
class of stochastic programming problems. Stochastic pro-
gramming solves many real-life problems where optimization
and randomness appear. Stochastic programming problems
arise in economy, finance, industry, agriculture and logistics,
cf. [23].



Incorporating integer variables into optimization problems
leads in many cases to more realistic models, however,
the resulting problems are much more theoretically and
computationally demanding. There was a large development
in stochastic integer programming in theory and algorithms
during last decade [20], [21].

Successful application of stochastic programming prob-
lems requires perfect knowledge of underlying probability
distribution of random parts. However, the distribution is
usually estimated or approximated. Hence, stability analysis
with respect to changes of the distribution is necessary,
cf. [10]. There are approaches that enable us to estimate the
change in the optimal value of our problem if some change
in the underlying distribution occurs. Popular theoretical
approach is based on probability metrics, cf. [19], which
enables us to bound distance between optimal values of
our optimization problem with different underlying mea-
sures using appropriate probability metrics. However, it can
be difficult to compute the metrics, especially in integer
stochastic programming where very complicated metrics
appear. On the other hand, contamination techniques are
more computationally tractable than the approach based
on probability metrics, however less general. In this paper
we investigate the application of contamination techniques
in investment problems with real features, where integer
allocations, transactions costs and Conditional Value at Risk
measure are considered.

The paper is organized as follows. In Section II, con-
tamination techniques for general stochastic optimization
problems are reviewed. In Section III, one period mean-
risk model with real features is introduced. CVaR is used
to measure the risk of portfolios, integer restrictions and
transaction costs are involved. Section IV contains numerical
study where the introduced mean-risk model is applied to
real portfolio problem with Czech investment funds.

II. CONTAMINATION TECHNIQUES

In this chapter we review briefly general concept of
Gateaux directional differentiability and its application in
contamination techniques for general stochastic program-
ming problems. We may refer to [8], [9] for introduction and
main theoretical results, to [7] for applications in stochastic
integer programming and to [11] for risk modelling with
Value at Risk, Conditional Vale at Risk. This article combines
approaches from [7], [11].
In general, we may consider the following stochastic opti-
mization problem

inf
x∈X

g(x,P), (1)

whereX is a closed subset of IRn, the underlying probability
measureP belongs to a general class of Borel probability
measuresP with supportΞ ⊆ IRm, and g is an objective
function from IRn×P to extended real numbers. To apply
the contamination techniques, the objective function is as-
sumed to be concave or even linear inP. The latter is true,
e.g. for objective functions of expectation type.

Let P∈ P and Q ∈ P, then the contaminated distribution
Pλ is defined for allλ ∈ [0,1] by

Pλ = (1−λ )P+ λQ.

We denote extreme value function and optimal set mapping
of contaminated stochastic programming problem as

ϕ(λ ) = inf
x∈X

g(x,Pλ ), (2)

ψ(λ ) = argmin
x∈X

g(x,Pλ ) = {x∈ X : g(x,Pλ ) = ϕ(λ )}.

The Gateaux derivative of the extreme value function atP
in directionQ−P is then defined as

ϕ ′(P;Q−P) = lim
λ→0+

ϕ(λ )−ϕ(0)

λ
.

If we assume, that both optimal valuesϕ(0),ϕ(1) are finite
and the derivativeϕ ′(P;Q− P) exists, the concavity of
the objective function in the underlying distribution ensures
concavity of the extreme value function. Hence, we can
construct the contamination bounds for the extreme value
function of the contaminated problem (2) as follows

(1−λ )ϕ(0)+ λ ϕ(1)≤ ϕ(λ ) ≤ ϕ(0)+ λ ϕ ′(P;Q−P),

λ ∈ [0,1].

In order to evaluate these bounds we need to evaluate the
Gateaux derivative of the optimal value function or at least
upper bound for the derivative. However, we do not need to
solve any contaminated problem which is always larger then
the original and fully contaminated problem.

III. MEAN-CVAR MODEL

A. Value at Risk and Conditional Value at Risk

In this part we review definitions of Value at Risk and
Conditional Value at Risk and mention their basic properties
and relations, cf. [17].

If we denoteZ a general loss variable with distribution
function F, thenα VaR is defined as

VaRα = min{z : F(z) ≥ α}

for some levelα ∈ (0,1), usually 0.95 or 0.99. We must
be careful when we define CVaR. The popular definition as
”mean of losses greater then VaR” is inaccurate in general,
see [17]. Correctly, CVaR is defined as mean of losses in the
α-tail distribution

Fα(z) =
F(z)−α

1−α
, if z≥VaRα

= 0, otherwise.

In general, it can even hold, see [17]:

IE[Z|Z ≥VaRα ] < CVaRα < IE[Z|Z > VaRα ].

For application of CVaR in optimization problems, the
following minimization formula is of crucial importance,
cf. [17, Theorem 10]:

CVaRα = min
η∈IR

[

η +
1

1−α
IE[Z−η ]+

]

, (3)



TABLE I

TRANSACTION COSTS

CZK l al cl

0 - 10 000 2 % 0 0 0
10 000 - 50 000 1.5 % + 50 1 10 000 150
50 000 - 250 000 1 % + 300 2 50 000 800
250 000 - 500 000 0.5 % + 1550 3 250 000 2800
500 000 and more 0 % + 4050 4 500 000 4050

where [·]+ denotes positive part andη is a real auxiliary
variable. The set of optimal solutions is a closed interval,
which containsVaRα as its lower boundary, possibly reduc-
ing exactly toVaRα . If the loss variable depends on decision
variables, sayZ(x), x ∈ X, minimization of CVaR can be
converted into minimition of the auxiliary function defined
in (3) over the auxiliary varibleη and simultaneously over
decisionsx, i.e.

min
x∈X

CVaRα(x) = min
(η,x)∈IR×X

[

η +
1

1−α
IE[Z(x)−η ]+

]

.

The previous relation is called optimization shortcut, cf.[17].

B. Mean-risk model

In this part we formulate investment problem with trans-
action costs, integer allocations and CVaR risk measure.
Similar investment problems with CVaR and MAD risk
measures and transaction costs were discussed in [4], [14].

We denotePi quotation of securityi, fi fixed transaction
costs,ci proportional transaction costs (not depending on in-
vestment amount),Ri random return of securityi, xi number
of securities,yi binary variables which indicate, whether the
security i is bought or not. Then the loss random function
depending on our decisionx,y and random returnsR is equal
to

Z(x,y,R) = −
n

∑
i=1

(Ri −ci)Pixi +
n

∑
i=1

fiyi

together with the constraints 0≤ xi ≤ uiyi using upper bounds
ui > 0 ∀i.

Typical real proportional transaction cost are not constant
but depend on invested amount. We denote such cost function
ci(Pixi), which is usually piecewise linear concave, see
Fig. 1, and can be given by the points(ail ,cil )

Li
l=0, where

a0 < · · · < aL are bounds of intervals andc0 < · · · < cL are
corresponding transaction costs, see Table I. If we set the
highest admissible investment into the asseti to 500 000
CZK, the cost function can be rewritten using linear functions

and auxiliary binary variables.1

c(Px) =
L

∑
l=0

γl cl , Px=
L

∑
l=0

γl al ,

γ0 ≤ y0,

γl ≤ yl +yl−1, l = 1, . . . ,L−1,

γL ≤ yL,

L

∑
l=0

yl = 1, yl ∈ {0,1},

L

∑
l=0

γl = 1, γl ≥ 0.

Other possibility is that the transaction costs are piecewise
constant depending on investment amount, see [14].
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Fig. 1. Concave transaction costs from Table I (nondifferentiable points
(al ,cl )

4
l=0)

We will assume that the distribution of random returns
is finite discrete, i.eP ∼ D({p j , rP

j }
JP

j=1) with probabilities

p j ≥ 0 of realizationsrP
j , and∑JP

j=1 p j = 1.
To be able to apply contamination techniques directly

we need to have objective function of expectations type
and no random parts in constraints. This corresponds to the
aggregate function approach, i.e. the objective function of
our problem is given by

gρ(η ,x,y;P) = (1−ρ)
J

∑
j=1

p jZ(x,y, rP
j ) (4)

+ρ
(

η +
1

1−α

J

∑
j=1

p j [Z(x,y, rP
j )−η ]+

)

, (5)

whereρ ∈ (0,1) is a parameter corresponding to the agregate
function. If we setρ = 0 we minimize expected loss without
involving risk minimization. On the other hand, if we set
ρ = 1 we are absolutely risk averse, i.e. we minimize risk

1For simplicity we drop the indexi.



only without considering mean loss (return). Our investment
problem is

min gρ(η ,x,y;P)
s.t. l iyi ≤ xi ≤ uiyi , i = 1, . . . ,n,

Cl ≤ ∑n
i=1Pixi ≤Cu,

xi ≥ 0, integer, i = 1, . . . ,n,

yi ∈ {0,1}, i = 1, . . . ,n,

η ∈ IR,

(6)

whereCl andCp are lower and upper bound on the capital
available for the portfolio investment,l i > 0 and ui > 0
are lower and upper number of units for each securityi.
Using auxiliary variables, the investment problem can be
reformulated as mixed-integer linear programming problem.

min

[

(1−ρ)∑J
j=1 p j

(

−∑n
i=1(r i j −ci)Pixi + ∑n

i=1 fiyi

)

+ρ
(

η + 1
1−α ∑J

j=1 p jv j

)

]

s.t. −∑i=1(r i j −ci)Pixi + ∑n
i=1 fiyi −η ≤ v j ,

j = 1, . . . ,J,
l iyi ≤ xi ≤ uiyi , i = 1, . . . ,n,

Cl ≤ ∑n
i=1Pixi ≤Cu,

v j ≥ 0, j = 1, . . . ,J,
xi ≥ 0, integer, i = 1, . . . ,n,

yi ∈ {0,1}, i = 1, . . . ,n,

η ∈ IR.

Cardinality constraints on maximal number of different
assetsma in a portfolio can be formulated using the binary
variables. If our assets can be split into different sectors,
we may have cardinality constraints in any sector, sayi =
n1, . . . ,n2, on maximal number of different assetsms, i.e.

n2

∑
i=n1

yi ≤ ms
.

On the other hand, if we want to buy at least one asset in
the sector, we set

n2

∑
i=n1

yi ≥ 1.

If you buy asseti1, you can not buyi2, can be expressed as
a constraint

yi2t(ξ t−1) ≤ (1−yi1t). (7)

It is necessary to notice that all mentioned constraints arelin-
ear. We can also incorporate several institutional constraints
in similar way etc.

C. Contaminated problem and contamination bounds

We consider another finite discrete distributionQ ∼
D({q j , r

Q
j }

JQ

j=1) with probabilitiesq j ≥ 0 of realizationsrQ
j ,

and ∑JQ

j=1q j = 1, which will be used as contamination
distribution. We denote the optimal value functionϕ(λ ) and
the set of optimal solutions

ψ(λ ) = {(η ,x,y) ∈ IRn+1×{0,1}n :

(1−λ )gρ(η ,x,y;P)+ λgρ(η ,x,y;Q) = ϕ(λ )}

of the contaminated problem

ϕ(λ ) = min (1−λ )gρ(η ,x,y;P)+ λgρ(η ,x,y;Q)
s.t. l iyi ≤ xi ≤ uiyi , i = 1, . . . ,n,

Cl ≤ ∑n
i=1Pixi ≤Cu,

xi ≥ 0, integer, i = 1, . . . ,n,

yi ∈ {0,1}, i = 1, . . . ,n,

η ∈ IR,λ ∈ [0,1].

(8)

We assume that both the original problem (forλ = 0) and
the fully contaminated problem (forλ = 1) have nonempty
set of optimal solutions. For the directional derivative ofthe
extreme value function the following equalities hold, cf. [6]:

ϕ ′
+(0) = min

ψ(0)
gρ(η ,x,y;Q)−ϕ(0),

ϕ ′
−(1) = min

ψ(1)
gρ(η ,x,y;P)−ϕ(1).

Using the explicit formulas for directional derivatives wecan
construct upper contamination bounds.

(1−λ )ϕ(0)+ λ ϕ(1)≤ ϕ(λ )

≤ min{ϕ(0)+ ϕ ′
+(0)λ ,ϕ(1)+ ϕ ′

−(1)(1−λ )},

λ ∈ [0,1].

Note, that a solution of the original and the fully contami-
nated problem is needed to obtain the bounds.

IV. NUMERICAL STUDY

We would like to invest 500 000 CZK into Czech shares
funds using Mean-CVaR model with real features introduced
in previous chapter. We will also demonstrate practical use
of contamination techniques.

We consider 30 Czech shares funds which can be divided
into 4 types:

• stock funds(i ∈ {1, . . . ,8}): ČPI - OPF global.znacek,
ČSOB Akciovy Mix, IKS Svetovych indexu, IŠCS-
SPOROTREND, Pioneer akciovy fond,ČPI - OPF Fond
nove ekonomiky,̌CPI - OPF Fond ropneho a energetiky,
ČPI - OPF Fond farmacie a biotec;

• bond funds (i ∈ {9, . . . ,14}): ČPI - OPF korp.
dluhopisu, ČSOB Bond Mix, IŠCS-BONDINVEST,



ISČS-SPOROBOND, IŠCS-TRENDBOND, Pioneer
obligacni fond;

• financial funds(i ∈ {15, . . . ,18}): ČPI - OPF Penezni,
IKS Penezni trh, IŠCS-SPOROINVEST, Pioneer
Sporokonto;

• mixed funds(i ∈ {19, . . . ,30}): ČPI - Smiseny OPF,
ČSOB bohatstvi,ČSOB nadacni,ČSOB stredoevrop-
sky, IKS Balancovany, IKS Global konzervativni,
ISČS-Dynamicky Mix FF, IŠCS-FOND RIZENYCH
VYNOSU, ISČS-Vynosovy OPF, IŠCS-Vyvazeny Mix
FF, Pioneer dynamicky fond, Pioneer rustovy fond.

Week returnsrw from January 2005 to April 2009 were
downloaded from [2]. We used four successive returns to es-
timate month returns, i.e.rm = ∏4

t=1(1+rw
t )−1, on which we

based our portfolio optimization model. We also include two
riskless assets (term deposits) into our model (i ∈ {31,32}).
We use condition similar to (7) to differ two zones with
different guaranteed interest rates, i.e. if you deposit between
50 000 CZK and 250 000 CZK, your interest will be lower
than if you deposit between 250 000 CZK to 500 000 CZK.
Proportional transaction costs range from 0 to 2 per cent
depending on the fund.

In the source of data we can distinguish two periods
- before and during distress. We use the first period to
construct our portfolio and the second period to the post-
analysis of our results. We study performance of our port-
folios and apply the contamination technique. We choose
four portfolios with different risk-aversion parametersρ , see
Table II, and test their in-sample, Fig. 2, and out-of-sample
performance, Fig. 3. We see that risky portfolio (ρ = 0)
behaves well during in-sample period, however during out-
of-sample period leads to the greatest loss. On the other hand,
the most conservative portfolio (ρ = 1) brings the least losses
during distress. Contamination bounds, see Fig. 4, show that
the portfolio risk increases with higher contamination.

The numerical study was processed on HP PC with
Intel(R) Pentium(R) Dual CPU E2200 @ 2.20Ghz, 3GB
RAM, 300GB hard disk and Windows Vista Home Premium
system. MPL modelling system [3] and CPLEX solver [1]
were used to solve the problems, which do not take more
than few seconds.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We introduced investment problem with integer alloca-
tions, transaction costs and Conditional Value at Risk as a
risk measure. We proposed contamination techniques, which
enabled us to quantify the change in optimal value, if
the underlying distribution was contaminated by another
distribution.

TABLE II

INVESMENTS(IN THOUSANDSCZK)

ρ 0 0.4 0.5 1

ISČS-SPOROTREND 100 30 0 0
ČSOB Bond Mix 0 70 100 0

ČPI - OPF Penezni 100 100 100 100
Pioneer Sporokonto 100 100 100 0

IKS Balancovany 100 100 100 50
IKS Global konzervativni 100 100 100 100

Term deposits 0 0 0 250

Expected loss -776.55 -553.08 -485.87 -288.58
CVaRα 472.43 48.19 -27.54 -31.50

TABLE III

CONTAMINATION FOR ρ = 1

Distribution P Q

ČPI - OPF Penezni 100 000 CZK 100 000 CZK
IKS Balancovany 50 000 CZK 0

IKS Global konzervativni 100 000 CZK 0
Term deposits 250 000 CZK 400 000 CZK

CVaRα -31.5020 189.1228
VaRα -4572.7500 -394.6000

ϕ ′ 2579.9976 -95.1548

We applied introduced investment model to real data
of 30 Czech investment funds. We studied in-sample and
out-of-sample performance of portfolios with different risk
aversions and applied contamination techniques to study the
behaviour of the risk before and during distress.

B. Future Works

First computational experiments show that solving multi-
period investment problems is much more computationally
demanding. Without any special approaches it leads to solv-
ing large scale mixed-integer problems which might take
huge number of time. In will be necessary to take into
account structure of the problem and to use decomposition
algorithms, see [20], which are able to decompose the large
scale original problems into smaller ones. The future research
will be devoted to this area.
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[11] J. Dupačová, J. Poĺıvka (2005).Stress Testing For VaR and CVaR.
Quantitative Finance, Volume 7, Issue 4, 411-421.

[12] K. Klamroth, J. Tind, S. Zust (2004).Integer Programming Duality in
Multiple Objective Programming. Journal of Global Optimization 29,
118.

[13] H. Konno, H. Yamazaki (1991).Mean-absolute deviation portfolio
optimization model and its applications to Tokyo stock market. Man-
agement Science, Volume 37, Issue 5, 519 - 531.

[14] H. Konno, R. Yamamoto (2005).Integer programming approaches
in mean-risk models. Computational Management Science, Volume 2,
Number 4, 339-351.

[15] H. Markowitz (1952).Portfolio Selection. Journal of Finance, Vol. 7,
No. 1., 77-91.

[16] K. Miettinen (1999).Nonlinear multiobjective optimization. Kluwer
Academic Publisher.

[17] R.T. Rockafellar, S. Uryasev (2002).Conditional Value-at-Risk for
General Loss Distributions. Journal of Banking and Finance, 26, 1443-
1471.

[18] R. T. Rockafellar, S. Uryasev, and M. Zabarankin (2006). Generalized
Deviations in Risk Analysis. Finance and Stochastics. 10, 51-74.

[19] W. Römisch (2003).Stability of Stochastic Programming Problems.
In Stochastic Programming (A. Ruszczynski and A. Shapiro eds.),
Handbook in Operations Research and Management Science Vol. 10,
Elsevier, Amsterdam, 483-554.

[20] W. Römisch, R. Schultz (2001).Multistage stochastic integer program-
ming: an introduction. In: M. Grötschel, S.O. Krumke, J. Rambau
(Eds.) Online Optimization of Large Scale Systems, Springer-Verlag
Berlin, 581-600.

[21] R. Schultz (2003).Stochastic programming with integer variables.
Mathematical Programming, Ser. B 97: 285309.
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