
 
 

 

  

Abstract — The paper presents evaluation of multi-

parametric multiple-model predictive control (mp-MMPC) of 

nonlinear process using multiple linearized models. With this 

approach, the nonlinear process is approximated by a set of 

local linear dynamics since compared to single linear model 

based MPC, a performance improvement is expected with the 

reduction of plant-to-model mismatch. Recently developed 

methods of multi-parametric model predictive control (mp-

MPC) for hybrid systems provide an interesting opportunity for 

solving a class of nonlinear control problems. However the full-

featured tracking hybrid mp-MPC controller results in 

enormous off-line computation burden. In this paper a multiple-

model (MM) approach is used to reduce the optimization 

problem. It is evaluated in a case study, where an output 

feedback, offset-free tracking mp-MMPC controller was 

considered as a replacement for a PID controller based scheme 

for control of pressure in a wire annealing machine. The 

evaluation was carried out on a nonlinear model of the process. 

I. INTRODUCTION 

ODEL predictive control (MPC), also known as 
receding horizon control, has grown to the level of a 

strong player in industrial applications where linear systems 
subject to linear inequality constraints are involved. 
Nevertheless, industrial processes are in general nonlinear by 
their nature and operate over a broad range of operating 
conditions. 

A common strategy in dealing with the complexity of 
nonlinear systems is the use of hybrid and multiple 
model/controllers and this way various approaches were 
developed. In the recent years considerable research was 
focused on MPC methods for hybrid systems [1, 2]. On the 
other hand many efforts were put in development and 
application of multiple model/controller solutions within the 
MPC field [3, 4, 5, 6, 7]. Some other methods relating to 
multiple-model approach to control of nonlinear systems 
involve gain scheduling [8, 9], multi model adaptive control 
[10], supervisory control [11, 12]. 

Following the appearance of MPC methods for hybrid 
systems, comprising continuous dynamic components and 
logical discontinuous components [1, 2], and linear model 
based mp-MPC methods [13, 14], multi-parametric variants 
of MPC methods for hybrid systems have appeared [15, 16, 
17, 18, 19, 20, 21]. Also several software toolboxes have 
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been created [22, 23, 24]. Typically, such hybrid mp-MPC 
methods rely on multi-parametric mixed-integer linear or 
quadratic programming solvers (mp-MILP/MIQP) [25, 26, 
27], whereas the related on-line hybrid MPC methods 
employ conventional MILP or MIQP solvers. 

With the explicit multi-parametric formulation of the 
control problem, the optimization problem may be solved in 
advance, off-line. This allows very simple implementation of 
the on-line controller in the form of a table look-up, avoiding 
the need for on-line optimization. Therefore it is possible to 
implement them in industry standard programmable logic 
controllers, embedded controllers, and even on FPGA chips 
[28].   

However due to the parametric explosion of the off-line 
mp-MILP/MIQP computation burden with the problem 
dimensions, this approach is practically feasible for MPC 
problems of relatively small sizes. Therefore it is more 
interesting for rather low-level control applications, such as 
advanced PID replacement and small-scale multivariate 
processes than the conventional application niche of MPC. 
Essentially the use of hybrid model in the controller extends 
optimization problem further and consequentially increases 
computation time to an amount that is inconvenient for 
practical for use in industrial applications. 

The presented multiple-model predictive control (MMPC) 
approach offers a suboptimal alternative to hybrid MPC 
methods that significantly reduces computation burden. Thus 
it provides a practically usable approach for solving 
nonlinear control problems by approximating the nonlinear 
system with a piecewise-affine (PWA) hybrid model [39]. In 
[40], such an approach was studied recently, with focus on 
stability of the hybrid control system.  

The theoretical papers on hybrid mp-MPC mostly focus 
on the state feedback problem and related stability, 
feasibility and computational efficiency issues. However, in 
most practical applications output feedback tracking 
controllers with steady-state offset elimination are required 
[29, 30; 31, 32, 33]. A hybrid state estimator is required for 
output feedback [34, 35, 36, 37]. The controller-estimator 
interplay must not be underestimated, as it is well known that 
despite favourable properties of both, the joint control 
system may exhibit arbitrarily poor stability margins and 
robustness [38].  

This paper presents a simulation case study. An output 
feedback 2-norm finite horizon mp-MMPC controller is 
evaluated for offset-free tracking control of pressure in the 
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vacuum chamber of a wire annealing machine, a high-order 
nonlinear system approximated with a 2nd order nonlinear 
model. The plant is non-square with 2 inputs 1 output. For 
output feedback, a switching Kalman filter (KF) is used; the 
active model is determined directly from the control signals 
and is used also to select the active controller. Additional 
attention is paid to implementation issues that are important 
in low-level control: efficient disturbance rejection, 
robustness to modelling error [41, 42]. Particularly to hybrid 
models, predictable behaviour at switching among the 
dynamics is required, as discontinuities in the model may 
lead to formally correct results that are not useful in practice.  

The following sections contain: a brief overview of mp-
MMPC control scheme; tracking and steady-state offset 
removal issues; plant description; the simulation model of 
the plant, the controller PWA model; controller and KF 
tuning; simulation results; discussion and conclusions.  

II. THE MP-MMPC CONTROL SCHEME 

For control the process is approximated with s linear 
affine models that built a hybrid PWA state space model 
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where k is the discrete time index, Ai, Bi Ci, Di state space 
matrices, fi, gi the affine vectors, mu ℜ∈ input, nx ℜ∈  state, 

and P
i valid region of the state+input space in mn+ℜ . The 

system is subject to input and state constraints. For each 
region P

i a model exists and for it the corresponding mp-
MPC controller is designed. The currently active model is 
determined by Kalman filter (KF) from estimated state 
values. Each time step the active controller computes the 
control signal. The control scheme is presented in Fig. 1. 

 
Fig. 1. Multiple-model predictive control scheme. 

III. TRACKING IMPLEMENTATION AND OFFSET REMOVAL 

The first step towards a tracking controller is offset-free 
output reference yr tracking. Extensions to the output cost 
formulation and output reference tracking are described in 
[14, 20, 33]. Reference tracking may be implemented by 
tracking velocity form model augmentation [14, 23, 33] or 
by direct extension of the cost function [22]. Velocity form 
model augmentation is also useful for specifying rate 
constraints on process inputs. However, the basic reference 

tracking controller removes steady-state offset only with 
non-zero reference signals.  

Integral action is required for removal of steady-state 
offset with asymptotically non-zero disturbances [29 30; 31, 
32]. It may be achieved either by disturbance integration [24, 
43, 31] or by disturbance estimation [42, 31, 32]. The 
estimation approach is preferred, as the integration approach 
is prone to integrator wind-up in case of unreachable targets, 
and affects the nominal performance in the absence of 
disturbances. Further, there is a choice of using a scheme 
with a target calculator (TC) or a "unified" scheme without 
one; the latter was selected as in [42]. An integrating 
disturbance estimation state d was added at the output of 
affine dynamics using output disturbance augmentation 
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where wa(k) = [wx
T(k) wd

T(k)]T
 and v(k) are noise signals to 

the state and the output, respectively, and G may be used to 
specify the access of the noise to the state (by default, G = I). 

Kalman filter was used for state estimation of the linear 
component of the dynamics, by assuming that a stochastic 
variable w(k) with covariance QKF acts the augmented state 
[xT(k) d

T(k)], and that measurement noise v(k) with 
covariance RKF at the output. Switching is performed by 
changing the gain C

i and offset g
i in the output equation, 

regarding to the currently active dynamic i, determined from 
the estimated system states as described in Section VI. The 
corresponding (active) controller computes the next control 
signal vector based on its previous value.  

The control problem is ill-conditioned for a plant with 
more inputs than outputs. With the unified scheme, this issue 
may be solved by using a fixed input reference value ur with 
an appropriate (small) penalty Ru in the cost function for the 
surplus control input(s). In mp-MPC the use of fixed 
reference values urf via a coordinate transformation un = u – 
urf is beneficial in order not to increase computational 
demand. If the implementation does not allow u signal 
references [23], this may be achieved by using a state 
reference and penalty for the past control signal state u(k–1) 
within the tracking augmented state vector.  

IV. PRESSURE CONTROL IN WIRE ANNEALER 

The case study control problem is related to the vacuum 
subsystem of a wire annealing machine of PlasmaIt GmbH. 
In the annealer, the processed metal wire is heated using 
magneto-focused plasma in an adequate inert gas 
atmosphere. The controller maintains the specified pressure 
p (process output y) in the vacuum chamber of the annealer 
that may vary depending on the type of wire and gas. The 
construction of the vacuum subsystem ensures that a certain 
desired pressure profile along the vacuum chamber is 
maintained to prevent undesired leakage. Several vacuum 
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pumps are connected to different chambers that are separated 
by sealings. The pressure p is controlled roughly by 
adjusting the frequency converters of the pumps u1 
connected to chambers at wire exit (right hand side of Fig. 
2). Additionally, a valve u2 bypassing the sealing before the 
main chamber is used for fast regulation, with approximately 
five times faster response but a limited action range. The 
controller must be able to rapidly suppress fast-acting 
disturbances that appear during plant operation, such as 
momentary sealing changes, ignition of plasma, etc. It must 
be able to operate over a large range of operating points, 
affected by the pressure set-point, wire diameter, machine 
temperature during start-up, etc. Also, it must suppress 
measurement noise efficiently. 
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Fig. 2. Vacuum subsystem of the annealer 

 
Due to the properties of the actuators, amplitude and rate 

constraints must be regarded: 0 < u1 < 50 [s-1], 0 < u2 < 100 
[%], -5 < ∆u1 < 5 [s-2], -50 < ∆u2 < 50 [%/s]. The measure-
ment range is 0 < p < 133 [mbar], however the pumps at the 
wire input always maintain it below 22 mbar. Regarding the 
spare degree of freedom, which is available when the narrow 
u2 constraints are inactive, it is reasonable to keep u2 in the 
centre of its linear range when possible, so that the controller 
may efficiently react to disturbances in any direction.  

Both actuators exhibit static nonlinear characteristics. 
Approximations of the characteristics, made from measure-
ment data in a limited number of operating points, are shown 
in Fig. 3.  
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Fig. 3. Static characteristics: (left) p [mbar] as a function of u1 when u2 = 
30 %; (right) p [mbar] as a function of u2, when u1 = 15 Hz 

From the experimental results with linear model based 
mp-MPC [42] it was evident that the control performance 
varies with the operating point considerably; the experiments 
indicated that the dependence on u1 was the most evident, 
whereas would u2 mostly remain within the linear region 
with proper controller tuning. In addition, the static 
characteristic of p as a function of u2 is dependent on u1. 
Within the limited time for experimentation, three operating 
points (OP) were examined, as displayed in Table I. There 
are considerable changes in local gains; changes in dynamics 
are also present but less expressed. 

V. SIMULATION MODEL 

A simple nonlinear simulation model was built for the 
purpose of controller evaluation in simulation. The model 
comprises invariant linear dynamics and static nonlinear 
functions at its inputs ulin. The static nonlinearity at ulin1 is a 
polynomial approximation of the static characteristic y = 
f(u1), including an appropriate offset. The static nonlinearity 
at ulin2 is a two-dimensional PWA look-up table, defining u2 
with respect to u1 according to Table 1, and including offset. 
The static characteristic y = f(u2) is disregarded, except for 
additional limits set to include only the linear region: 15 < u2 
< 45 [%]; not much effective range can be gained outside 
this region in practice. Measurement noise is also included.  

 
 TABLE I 

EXAMINED OPERATION POINTS – GAINS AND OFFSETS 

OP  u1 [Hz] u2 [%] u1 gain u2 gain 

1 (low extreme) 15  30 -0.3203   -1.0057 

2 (high extreme) 10 30 -1.0010   -2.4136 

3 (intermediate) 12.5 30 -0.7007   -1.7096 

VI. CONTROLLER MODELS 

The aim of hybrid modelling was to extend the model of 
the original linear mp-MPC controller with the known 
information regarding operating point dependent changes of 
gains and offset in Table I.  

All dynamics are based on a unity-gain linear discrete-
time state-space model with two inputs and one output, with 
second order dynamics for each input, with sampling time Ts 
= 0.2 s  
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For each PWA dynamic, affine gains and offsets for u1 
and u2 model branches are assigned in the output equation  

ii gDuxCy ++=  (4) 

where Ci and gi coefficients for particular region are given in 
Table II. 



 
 

 

TABLE II 
PIECEWISE AFFINE DYNAMICS GAINS AND OFFSETS 

PWA dynamic (i) output (gain) matrix Ci offset (gi) 

1 [ 0  -1.0010  0  -2.4136 ] 4.2408 

2 [ 0  -0.7007  0  -1.7096 ] -1.2497 

3 [ 0  -0.3203  0  -1.0057 ] -8.5920 

 
Initially the steady-state characteristic p = f(u1, u2) of the 

PWA model with switching with regard to u1 were 
considered; the u1 boundaries are at 11.25 Hz and 13.75 Hz. 
However, undesired control performance may appear around 
the discontinuous boundaries. For example, the controller 
may refuse to follow the reference signal across the region 
boundary if the cost of performance at the boundary (with 
tracking offset) is lower. Therefore, continuous boundaries 
are desired. Different solutions to this issue may be 
approached. In the upper chart of Fig. 4, the space is divided 
in 6 triangular planes by splitting the initial three rectangular 
regions. The lower chart of Fig. 4 shows the solution with 
the switching lines moved to static model plane intersections, 
while the number and the parameters of the dynamics are 
unaffected. The latter solution was adopted in this work in 
order to reduce the complexity. The plane boundaries of 
plane pairs (1, 2) and (2, 3) are 
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Fig. 4. Steady-state static characteristics p = f(u1, u2) of the PWA model: 
(above) based on u1 switching, further divided to avoid discontinuity; 
(below) more simple with switching on model plane intersection lines.   

Notice that continuous transition of the model states is 
also required; otherwise bumps may be noticed at 
boundaries.  

VII. CONTROLLER TUNING 

For practical purposes, computation times no more than a 
few minutes were considered useful, therefore only short 
finite horizon lengths could be used. Tuning via simulation 
requires long computations and because the effects of the 
tuning parameters are not always obvious in time domain. 
Therefore Local linear analysis (LLA), described in [42] 
was used. It is based on a closed-loop system equation that 
describes the relations from the inputs wa(k), v(k) and yr(k) to 

the noise-free output ynf(k), obtained by combining the 
equations of the control law, the estimator and the process. 
Root locus diagrams of controller poles are most valuable. 
Tuning is first made for the unconstrained region with the 
nominal model from the intermediate OP and verified with 
models of other OPs. After the mp-MPC controller is 
calculated, constrained regions and sequences with varying 
dynamics may be analysed.  

The following set of parameters was selected:  
• Linear controller and MM controllers I and II: 

N = 6, Nu = 2, Rdu = diag([0.1 0.05]), Ru = diag([10-6 0.02]) 
where Nu is the control horizon. 

• MM controller III (highest gain): 

N = 6, Nu = 2, Rdu = diag([0.05 0.05]), Ru =diag([10-6 0.025]) 

VIII. KALMAN FILTER FINE TUNING 

Extended LLA of the closed loop system was used. 
Primarily, local linear dynamics in the three OPs were 
studied for the unconstrained controller regions. In addition 
to nominal dynamics, the effect of plant-to-model mismatch 
for a selected set of models was always examined. Root 
locus diagrams and frequency characteristics of the 
sensitivity functions were observed.  

Useful results are obtained with the MPC standard output 
step disturbance model, with KF parameters:  
QKF = diag([10-6 10-6 10-6 10-6 1]), RKF = 10-3,  
although the bandwidth and the robustness are not as good as 
with linear mp-MPC with longer horizons [42].   

The efficiency of this disturbance model is limited, as 
there is always a slow estimator pole on the real axis, so the 
estimation error does not vanish faster than the controller 
dynamics. However, only a negligible improvement could be 
made by adjusting other diagonal elements of QKF, while the 
robustness to plant-to-model mismatch was inacceptable with 
the input disturbance model. Faster estimator dynamics may 
also be achieved by using pole placement, however all such 
attempts resulted in high estimator gains and were 
oversensitive to plant-to-model mismatch. 

IX. SIMULATION STUDY 

Fig. 5 shows tracking of a "staircase" yr signal across the 



 
 

 

relevant operating range of the process, including all three 
OPs (PWA dynamics), with both MM and linear model 
based mp-MPC with the same tuning parameters. Tracking is 
offset-free with both controllers. Effects of plant-to-model 
mismatch can be observed in linear mp-MPC response 
(black): overshoot is present at higher yr values where the 
process gain is higher, while the response gets sluggish at 
lower yr values. These effects are reduced with the MM mp-
MPC controller; however, the response with the same tuning 
parameters is not expected to look the same all operating 
points due to different model dynamics, and a (small) degree 
of modelling mismatch is still present. At some points, 
sluggish response due to transient u2 saturations may be 
noticed with both controllers, particularly at step changes of 
yr when u2 has not settled to its set-point 30 %. 
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(left axis, black line) and hybrid model based mp-MPC (right axis, grey). 
Top to bottom: yr (dotted) and y; u1; u2; the active linear model i used by 
the switching KF. 

 
In Fig. 6 and Fig. 7 the controller performance is shown 

around the two extreme OPs, 2.9 mbar and 7 mbar. A 
sequence of step changes of yr and disturbances at u1, u2, and 
y in both directions is made in 20 s intervals. The MMPC is 
able to achieve better performance by switching to the 
matching local dynamic. The difference among the 
controllers is relatively small; however, more difference is 
expected in practice due to unmodelled changes in the 
dynamics. Due to operation near steady state, saturations of 
u2 do not occur.  
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using linear (left axis, black line) and hybrid model based mp-MPC (right 
axis, grey) at OP1, 2.9 mbar. Signals as in Fig. 5. 

X. CONCLUSIONS 

In the paper a slight advantage of MM approach over 
linear controller due to decreased plant-to-model mismatch. 
The performance is similar to hybrid mp-MPC approach 
[44], however here significantly (100+ times) computation is 
required, which allows use of longer horizons, where the 
performance improvement over linear model mp-MPC 
becomes more pronounced. Besides, further improvement of 
MM controller in comparison to linear model based 
approach is expected in plant experimental test due to 
additional modelling error. 

Another advantage of MM approach is that it allows 
different tuning parameters to be used for each controller, 
enabling us to equalize the response among local controller 
models with different static gain and to maximize control 
performance and robustness as suggested in [42]. 

6.5

7

7.5

y
 [
m

b
a
r]

6.5

7

7.5

7

7.5

8

8.5

u
1

[H
z
]

25

30

35

40

u
2

[%
]

20

25

30

35

0 20 40 60 80 100 120 140 160 180

1

2

3

u
1

[H
z
]

time[s]  
Fig. 7. Sequence of step changes of yr and disturbances at u1, u2, and y 
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However, splitting a hybrid mp-MPC into several linear 

mp-MPC controllers causes the loss of optimality, as 



 
 

 

switching has to be based on external parameter. Thus 
neither the optimal cost, nor the switch is foreseen in the 
individual controller's prediction. Therefore current efforts 
and further work are focused in simplifications of the hybrid 
mp-MPC. 
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