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Abstract— Since Markowitz published his pioneer work [15], Minimizing risk 2(x) and maximizing expected return
the performance of a portfolio of assets has been measured &(x) at the same time under some common constraints
by its expected return and risk. However, his model had some X C IR" on portfolio composition leads to multiobjective
drawbacks. Transaction costs, indivisible assets and agsynet- S S h
rical quantitation of risk were not included into his investment (b'_opJeCt'Ve) _C)pt'm,'zat'on PrOblemS' We are lOOk"f]g for
model. efficient solutions, i.e. solutions€ X such that there is no

We deal with optimal investment problem with integer alloca  elementx € X with Z(x) < Z(X) and &(x) > &(X) with at
tions, transactions costs and Conditional Value at Risk mesure.  |east one strict inequality. There are two main approaches
The underlying distribution is only estimated. Hence, staldity for solving such problems, both leading to single objective

analysis with respect to some changes of the distribution is . . e .
necessary. We propose contamination techniques, which ebla problems and under mild condition to efficient solutions,

us to quantify the change in optimal value, if the underlying S€€ [16]: aggregate function (weighted sum) approach

distribution is contaminated by another distribution. They .

provide a way how to construct contamination bounds for QT[—(l—P)g(X)‘FP%(X)}

optimal value, which quantify the effect of considered chage

in probability distribution. for somep € (0,1), ande-constraint approach
We apply introduced investment model to real data of 30 )

Czech investment funds. We study in-sample and out-of-santg minZ(X)

performance of portfolios with different risk aversions and xeX min

apply contamination techniques to study the behaviour of tle Ex) >r™

risk before and during distress. . ; i
I uring ¢ with r™" such that{x € X : &(x) > r™"} is nonempty.

. INTRODUCTION In the case of multiobjective linear programming, there is
A. Mean-risk models and multiobjective optimization even known relation between both approaches. Using linear
programming duality we are able to obtain explicit relation

Due to the pioneer work of Harry Markowitz [15], the e . .
. . between weighting coefficients amebounds, i.e. between
performance of a portfolio of assets is measures not only b

its expected return but also by its risk. Searching the (mtimalngc:;m:/’l;rfko[l.zt]' model. both approaches lead to quadratic
portfolio leads to multiobjective (biobjective) optimizan Witz ' bp qu !

e .. _._programming problems. New risk measures are proposed in
problem where we maximize the expected return (m|n|m|28 9 9p prop

L . ._order to lead to linear programming formulation for diseret
expected loss) and minimize the risk at the same time. ; TS . .

) ; : . random variables which is easier to solve than quadratic
Markowitz used variance of the portfolio as the risk measure roblems

Many risk measures have been introduced and studied sirﬁ): . N L .
y q—|owever, introducing integer restriction to some variable

then: Mean absolute deviation (MAD) [13], Value at RiSkdestro s convexity of the underlying problem and makes it
(VaR), Conditional Value at Risk (CVaR) [17], drawdown ..~ Y y ying p .
difficult to solve. The aggregate function approach stilde

measures [18] .and many others. !n past years, \{aR becart‘neefficient solutions, but we are not able to obtain all them.
very popular risk measure and is nowadays widely useﬁ . - : )

. : o . ence, we only approximate the efficient frontier which

in practice even though it is not adequate risk measurgbntains mean returns and corresponding risks for efficient
cf. [22]. It lacks subadditivity which is crucial for correc b 9

diversification of our investments. Conditional Value asiRi solutions. Why integer variables are necessary in real finan

(CVaR) is often proposed as an alternative for VaR. CVal5Ial apphcaﬂon;. They help us model indivisible assets (w

. . o can buy only integral number of assets), transaction costs,
's usually defined as the conditional mean of losses Or]ardinalit constraints (restrictions on maximal numbér o
condition that we are beyond VaR. Since this definition Ieaoﬁs y

. . T Inds of assets), logical relations (if you buy certain sse
to some inaccuracies, more accurate definition is needeglo)u must not buy other) etc
for general loss distributions, see [17]. If CVaR is defined y '

correctly, it fulfils axioms of coherent risk measures [5]B. Stochastic programming
which are accepted by theorists as well as by practitioners. \jean-risk investment models can be seen as a special
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Statistics, Sokolovska 83, Prague 8, 18675, The Czech HMRepub arise in economy, finance, industry, agriculture and laggst
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Incorporating integer variables into optimization probke Let Pc &2 andQ € &, then the contaminated distribution
leads in many cases to more realistic models, howeve?) is defined for allA € [0,1] by
the resulting problems are much more theoretically and PA — (1 AP+ A
computationally demanding. There was a large development =(1-2)P+AQ.
in stochastic integer programming in theory and algorithm@/e denote extreme value function and optimal set mapping

during last decade [20], [21]. of contaminated stochastic programming problem as
Successful application of stochastic programming prob- _ A

lems requires perfect knowledge of underlying probability ®(A) = )@‘(g(x,P ), @)

distribution of random parts. However, the distribution is , \\ _  Sramina(x P*) = {xe X : a(x.P*) = é(A

usually estimated or approximated. Hence, stability asialy v) gxexng( P =1 F 9GP = 9(A)}-

with respect to changes of the distribution is necessaryhe Gateaux derivative of the extreme value functioPat
cf. [10]. There are approaches that enable us to estimate thedirectionQ — P is then defined as

change in the optimal value of our problem if some change 6(A)—6(0)

in the underlying distribution occurs. Popular theordtica ¢'(P;Q—P)= lim 2"~

approach is based on probability metrics, cf. [19], which A0+ A
enables us to bound distance between optimal values Kbfwe assume, that both optimal valugg0), (1) are finite

our optimization problem with different underlying mea-and the derivativeg’(P;Q — P) exists, the concavity of
sures using appropriate probability metrics. Howeverait ¢ the objective function in the underlying distribution erss

be difficult to compute the metrics, especially in integetoncavity of the extreme value function. Hence, we can
stochastic programming where very complicated metriasonstruct the contamination bounds for the extreme value
appear. On the other hand, contamination techniques &uction of the contaminated problem (2) as follows

more computationally tractable than the approach based .

on probability metrics, however less general. In this pape(rl_)‘)¢(o)+)‘¢(1) S¢(A)=¢(0)+A9'(PQ-P),

we investigate the application of contamination technique A €10,1].

in inve_stment problgms with real featur_es, where .integ% order to evaluate these bounds we need to evaluate the
allocations, transactions costs and Conditional Valueisk R Gateaux derivative of the optimal value function or at least

measure are considered. upper bound for the derivative. However, we do not need to

The paper is organized as follows. In Section I, CON5olve any contaminated problem which is always larger then

tamination technlgues for general stochastic optlmlmtlothe original and fully contaminated problem.
problems are reviewed. In Section Ill, one period mean-
risk model with real features is introduced. CVaR is used 1. MEAN-CVAR MODEL

to measure the risk of portfolios, integer restrictions ang \/3jue at Risk and Conditional Value at Risk
transaction costs are involved. Section IV contains nucaéri
study where the introduced mean-risk model is applied t8

real portfolio problem with Czech investment funds.

In this part we review definitions of Value at Risk and
onditional Value at Risk and mention their basic propertie
and relations, cf. [17].

Il. CONTAMINATION TECHNIQUES If we denoteZ a general loss variable with distribution

. . ) functionF, thena VaR is defined as
In this chapter we review briefly general concept of

Gateaux directional differentiability and its application VaRy =min{z: F(2) > a}

cqntamination techniques for general stqchastic Programs; some levela e (0,1), usually 0.95 or 0.99. We must
ming problems. We may refer to [8], [9]_for_|ntr0_duct|on_ andye careful when we define CVaR. The popular definition as
main theoretical results, to [7] for applications in Sto&fi@ »yean of losses greater then VaR” is inaccurate in general,
integer programming and to [11] for risk modelling with gee 117). Correctly, CVaR is defined as mean of losses in the

Value at Risk, Conditional Vale at Risk. This article conmdsn a-tail distribution

approaches from [7], [11]. .
In general, we may consider the following stochastic opti- Fa(2) = Flz-a —a’ if z>VaRy,
mization problem l1-a

= 0, otherwise
ig;g(x’ P), (1) In general, it can even hold, see [17]:
whereX is a closed subset of IRthe underlying probability IE[Z|Z > VaR,] < CVaR, < [E[Z|Z > VaR,].

measureP belongs to a general class of Borel probability
measures? with support= C IR™, andg is an objective
function from IR' x &2 to extended real numbers. To apply :
the contamination techniques, the objective function is a&' [17, Theorem 10]:

sumed to be concave or even linearAnThe latter is true, o 1 n

e.g. for objective functions of expectation type. CvaRy, = ,52'.2 n-+ 1—a E[Z—nl"|, ®)

For application of CVaR in optimization problems, the
following minimization formula is of crucial importance,



TABLE |

and auxiliary binary variables.
TRANSACTION COSTS

L L
[ o [T a o | = M8 Px=5 va
0 - 10 000 2% 0 0 0 = -
10000-50000 || 1.5% + 50 1 10000 150 Vo S Yo,
50 000 - 250 000 1% + 300 || 2 50000 800 V<Vityig l=1...L-1
250 000 - 500 000|| 0.5 % + 1550|| 3 250 000 2800 - ’ E ’
500 000 and more|| 0% + 4050| 4 500000 4050 <y,

L
yi =1, yi €{0,1},
2,

where [[|T denotes positive part ang is a real auxiliary

variable. The set of optimal solutions is a closed interval, ZJM =1 y=>0.

which contains/aR; as its lower boundary, possibly reduc- -

ing exactly tovaR,. If the loss variable depends on decisionOther possibility is that the transaction costs are piesewi

variables, sayZ(x), x € X, minimization of CVaR can be constant depending on investment amount, see [14].

converted into minimition of the auxiliary function defined

in (3) over the auxiliary varible; and simultaneously over 40001

decisionsy, i.e. [
3000:

minCVaR,(x) = min [N+ iIE[Z(X) -n].

xeX a

(n,X)eRxX 1-— 2000]

The previous relation is called optimization shortcut[t7]. .
1000

B. Mean-risk model

In this part we formulate investment problem with trans- 10000C 20000C 30000C 40000C 50000C 60000C 70000C
a(.:tlc.m C.OStS’ Integer allocatlons. and CVaR risk mea_surlgi'g. 1. Concave transaction costs from Table | (nondiffeable points
Similar investment problems with CVaR and MAD rlsk(mq)fgo)

measures and transaction costs were discussed in [4], [14].

We denoteR quotation of security, f; fixed transaction e will assume that the distribution of random returns

costs,ci proportional transaction costs (not depending on ins finite discrete, i.eP ~ D({p,, P J ",) with probabilities
vestment amountR random return of security X; number

of securitiesy; binary variables which indicate, whether the
securityi is bought or not. Then the loss random function
depending on our decisiogy and random returnR is equal
to

pj > 0 of reahzatlonsJP andzJ lpJ =1

To be able to apply contamination techniques directly

we need to have objective function of expectations type

and no random parts in constraints. This corresponds to the
aggregate function approach, i.e. the objective functibn o

n n our problem is given by

Z(x,y,R) = —i;(Ri —Gi)RX; +i; fiyi

(&

. . . 9o(MXYiP) = (1=p) 5 PiZ(XY.1}) 4)
together with the constraints0x < u;y; using upper bounds =1
Ui:> O \fL 1 p
Typical real proportional transaction cost are not cortstan +p (’7 ti 5 > pilZ(xyry) - '7]+>7 (5)
=1

but depend on invested amount. We denote such cost function

ci(Px), which is usually piecewise linear concave, Segvherep < (0,1) is a parameter corresponding to the agregate
Fig. 1, and can be given by the POIF\(I&|,C||)| _o» Where  function. If we setp = 0 we minimize expected loss without
a < --- < a_ are bounds of intervals anth < --- <cL are jnyolving risk minimization. On the other hand, if we set

corresponding transaction costs, see Table I. If we set the— 1 we are absolutely risk averse, i.e. we minimize risk
highest admissible investment into the asiséd 500 000

CZK, the cost function can be rewritten using linear fune§io  For simplicity we drop the indei



only without considering mean loss (return). Our investinerC. Contaminated problem and contamination bounds

problem is We consider another finite discrete distributid® ~
min - go(1,X.y;P) D({qj,rQ}fil) with probabilitiesqj > 0 of realizationerQ,
st Liyi<x<uyi, i=1,...,n, and Z]]:lqj = 1, which will be used as contamination
G <3I,Px <Cy ©) distribution. We denote the optimal value functi¢f ) and
X >0, integer i=1,...,n, the set of optimal solutions
yi€{0,1},i=1...,n,

WA) ={(n,xy) € R™*1x {0,1}":

_ (1=2)9p(n,%Y;P) +AGp(1,%,Y;Q) = ¢(A)}
whereC andCp are lower and upper bound on the capital )
available for the portfolio investment; > 0 andu, > 0 ©f the contaminated problem

are lower and upper number of units for each security ¢ (A) = min (=28 (N,%Y;P) + A0 (1,%,Y; Q)

neR,

Using auxiliary variables, the investment problem can be st. Ly <x <uy,i=1,...,n,
reformulated as mixed-integer linear programming problem G <3",Rx <Cy, ®)
X >0, integer i=1,...,n,
min | (1-p)¥]_1pj (— SP(rij —C)PX+ 3, fiyi) yi€{0,1}i=1,....n,
n €IR,A €[0,1].
+p (’7 + ﬁ 2?71 pjvj> We assume that both the original problem (fox 0) and
B a the fully contaminated problem (fox = 1) have nonempty
st —Yi_a(rij — )P+ YLy fivi—n <vj, set of optimal solutions. For the directional derivativettoé
j=1....3, extreme value function the following equalities hold, &:[
liyi <x <uyi, i=1,...,n, 0.(0) — mings(n.xy:Q)—(0)
G <3L,Rx <C, +0) = mingp(n.xy; ,

vi>0,j=1,....],
X >0, integer i=1,...,n,
yi€{0,1},i=1,...,n,

¢ (1) = [L}ilr;gp(n,x,y: P)—¢(2).

Using the explicit formulas for directional derivatives wan

neRr. construct upper contamination bounds.
Cardinality constraints on maximal number of different 1Mo (0) L Ad(1) < d(A
assetar? in a portfolio can be formulated using the binary ( : 19(0) fp( ))\_ () , 3
variables. If our assets can be split into different sectors < min{¢(0) + ¢ (0)A,6(1)+¢-(1)(1-A)},
we may have cardinality constraints in any sector, say A €[0,1].

N,...,Mz, ON maximal number of different assets, i.e. Note, that a solution of the original and the fully contami-

n . nated problem is needed to obtain the bounds.
yi <nr.
i:znl | IV. NUMERICAL STUDY
On the other hand, if we want to buy at least one asset in e would like to invest 500 000 CZK into Czech shares
the sector, we set funds using Mean-CVaR model with real features introduced
N in previous chapter. We will also demonstrate practical use
22 yi>1 of contamination techniques.
=1 = We consider 30 Czech shares funds which can be divided
into 4 types:

If you buy asset;, you can not buy,, can be expressed as

a constraint « stock fundg(i € {1,...,8}): CPI - OPF global.znacek,

CsoB Akciovy Mix, IKS Svetovych indexu, GS-

Vit (€70 < (1= yiy). @) SPOROTREND, Pioneer akciovy fondP! - OPF Fond
nove ekonomikyCPI - OPF Fond ropneho a energetiky,
It is necessary to notice that all mentioned constraintdimre CPI - OPF Fond farmacie a biotec;
ear. We can also incorporate several institutional comifra « bond funds (i € {9,...,14}): CPI - OPF Kkorp.

in similar way etc. dluhopisu, CSOB Bond Mix, ISS-BONDINVEST,



ISCS-SPOROBOND,
obligacni fond; 5
financial funds(i € {15,...,18}): CPI - OPF Penezni,

ISS-TRENDBOND, Pioneer

TABLE Il
INVESMENTS(IN THOUSANDS CZK)

IKS Penezni trh, IES-SPOROINVEST, Pioneer | e — I 0‘(’) | 033 | 0-5’ |
) ISCS-SPOROTREND) 1
Sporgk](c)ntg, . 19, 30Y): CPI - Smi OPE _ CSOB Bond Mix 0 70 100
mixed funds(i € {19,...,30}): CPI - Smiseny * CPI - OPF Penezni| 100 100 100 100
CSOB bhohatstviCSOB nadacniCSOB stredoevrop- Pioneer Sporokontg 100 100 100
sky, IKS Balancovany, IKS Global konzervativni, KS G 'ESI Ea'ancovtény 188 188 igg 138
ISCS-Dynamicky Mix FF, I€S-FOND RIZENYCH O e deposits 0 0 ol 250
VYNOSU, ISCS-Vynosovy OPF, 16S-Vyvazeny Mix Expecied 0ss|| 77655 | -553.08 | -485.87 | -268.58
FF, Pioneer dynamicky fond, Pioneer rustovy fond. CVaR, || 472.43| 48.19| -27.54| -31.50
Week returnsrV from January 2005 to April 2009 were
downloaded from [2]. We used four successive returns to es- TABLE IlI
timate month returns, i.e™M = ﬂf‘:l(1+r;"’) —1, onwhich we CONTAMINATION FOR p = 1
based our portfolio optimization model. We also include two
riskless asse:f _(term dlleposns) into odq;fmodel {31,32}). " | DSHbuon ] P 9]
We use condition similar to (7) tq iffer two zones wit =51 - OPE Perczril 100 000 CZK | 100 000 CZK
different guaranteed interest rates, i.e. if you depogivben IKS Balancovany|| 50 000 CZK 0
50 000 CZK and 250 000 CZK, your interest will be lower IKS Global konzervativni || 100 000 CZK 0
than if you deposit between 250 000 CZK to 500 000 CZK. Term deposits|| 250 000 CZK | 400 000 CZK
Proportional transaction costs range from 0 to 2 per cent CQ//ZE; _4;12"57%%% _égi:égég
depending on the fund. ¢’ 2579.9976 -95.1548

In the source of data we can distinguish two periods
- before and during distress. We use the first period to
construct our portfolio and the second period to the post- L .
analysis of our results. We study performance of our port- We applled_ inroduced investment m(_)del_ fo real data
folios and apply the contamination technique. We choos(éf 30 Czech investment funds. We iStUd'Ef‘d |n.-sample.and
four portfolios with different risk-aversion parametgrssee out-of_-sample perfqrmance Of, portfollos W',th differenski
Table II, and test their in-sample, Fig. 2, and out-of-sampl2VE'SIons and applled contamination tech_mques to stugly th
performance, Fig. 3. We see that risky portfolio £ 0) behaviour of the risk before and during distress.
behaves well during in-sample period, however during ous. EFuture Works
of-sample period leads to the greatest loss. On the othel; han First computational experiments show that solving multi-
the most conservative portfolip (= 1) brings the least losses . "~ . X
during distress. Contamination bounds, see Fig. 4, shotv tiPe”Od |r_1vestm_ent problems IS much more cpmputaﬂonally
the portfolio risk increases with higher contamination. . emanding. W'thOl.Jt any special approaches_lt Ieaqls to solv-

The numerical study was processed on HP PC Wiéﬁ]g large scale mllxed—mtege_r problems which might t_ake
Intel(R) Pentium(R) Dual CPU E2200 @ 2.20Ghz, 3G uge number of time. In will be necessary to take ||jt_o
RAM. 300GB hard disk and Windows Vista Home Premiumaccm_mt structure of the_ problem and to use decomposition
system. MPL modelling system [3] and CPLEX solver malgonthms, see [20], which are able to decompose the large

were used to solve the problems, which do not take morsecale original problems into smaller ones. The future netea

will be devoted to this area.
than few seconds.
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risk measure. We proposed contamination techniques, which

enabled us to quantify the change in optimal value, if

the underlying distribution was contaminated by another{
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