
Efficient Reinforcement Learning for Motor Control

Marc Peter Deisenroth∗ and Carl Edward Rasmussen
Department of Engineering, University of Cambridge

Trumpington Street, Cambridge CB2 1PZ, UK

Abstract— Artificial learners often require many more trials
than humans or animals when learning motor control tasks
in the absence of expert knowledge. We implement two key
ingredients of biological learning systems, generalization and
incorporation of uncertainty into the decision-making process,
to speed up artificial learning. We present a coherent and fully
Bayesian framework that allows for efficient artificial learning
in the absence of expert knowledge. The success of our learning
framework is demonstrated on challenging nonlinear control
problems in simulation and in hardware.

I. INTRODUCTION

Learning from experience is a fundamental characteristic
of intelligence and holds great potential for artificial sys-
tems. Computational approaches for artificial learning from
experience are studied in reinforcement learning (RL) and
adaptive control. Although these fields have been studied
for decades, the rate at which artificial systems learn still
lags behind biological learners with respect to the amount
of experience required to solve a task. Experience can be
gathered by direct interaction with the environment.

Traditionally, learning even relatively simple control tasks
from scratch has been considered “daunting” [14] in the
absence of strong task-specific prior assumptions. In the
context of robotics, one popular approach employs knowl-
edge provided by a human “teacher” to restrict the solution
space [1], [3], [14]. However, expert knowledge can be
difficult to obtain, expensive, or simply not available. In the
context of control systems and in the absence of strong task-
specific knowledge, artificial learning algorithms often need
more trials than physically feasible.

In this paper, we propose a principled way of learning
control tasks without any expert knowledge or engineered
solutions. Our approach mimics two fundamental properties
of human experience-based learning. The first important
characteristic of humans is that we can generalize experience
to unknown situations. Second, humans explicitly model
and incorporate uncertainty into their decisions [6]. We
present a general and fully Bayesian framework for efficient
RL by coherently combining generalization and uncertainty
representation.

Unlike for discrete domains [10], generalization and in-
corporation of uncertainty into the decision-making process
are not consistently combined in RL although heuristics
exist [1]. In the context of motor control, generalization
typically requires a model or a simulator, that is, an internal
representation of the system dynamics. Since our objective

∗MP Deisenroth acknowledges support by the German Research Foun-
dation (DFG) through grant RA 1030/1-3 to CE Rasmussen.

is to reduce the interactions with the real system needed
to successfully learn a motor control task, we have to face
the problem of sparse data. Thus, we explicitly require a
probabilistic model to additionally represent and quantify
uncertainty. For this purpose, we use flexible non-parametric
probabilistic Gaussian process (GP) models to extract valu-
able information from data and to reduce model bias.

II. GENERAL SETUP

We consider discrete-time control problems with
continuous-valued states x and external control signals
(actions) u. The dynamics of the system are described by a
Markov decision process (MDP), a computational framework
for decision-making under uncertainty. An MDP is a tuple
of four objects: the state space, the action space (also
called the control space), the one-step transition function
f , and the immediate cost function c(x) that penalizes the
distance to a given target xtarget. The deterministic transition
dynamics

xt = f(xt−1,ut−1) (1)

are not known in advance. However, in the context of a
control problem, we assume that the immediate cost function
c(·) can be chosen given the target xtarget.

The goal is to find a policy π∗ that minimizes the expected
long-term cost

V π(x0) =
T∑
t=0

Ext [c(xt)] (2)

of following a policy π for a finite horizon of T time steps.
The function V π is called the value function, and V π(x0) is
called the value of the state x0 under policy π.

A policy π is defined as a function that maps states to
actions. We consider stationary deterministic policies that are
parameterized by a vector ψ. Therefore, ut−1 = π(xt−1,ψ)
and xt = f(xt−1, π(xt−1,ψ)). Thus, a state xt at time t
depends implicitly on the policy parameters ψ.

More precisely: In the context of motor control problems,
we aim to find a good policy π that leads to a low expected
long-term cost V π(x0) given an initial state distribution
p(x0). We assume that no task-specific expert knowledge
is available. Furthermore, we desire to minimize interactions
with the real system. The setup we consider therefore cor-
responds to an RL problem with very limited interaction
resources.

We decompose the learning problem into a hierarchy of
three sub-problems described in Figure 1. At the bottom
level, a probabilistic model of the transition function f is

intermediate layer: approximate inference

top layer: policy optimization

bottom layer: learning the transition dynamics

π∗

V π

f

Fig. 1. The learning problem can be divided into three hierarchical
problems. At the bottom layer, the transition dynamics f are learned. Based
on the transition dynamics, the value function V π can be evaluated using
approximate inference techniques. At the top layer, an optimal control
problem has to be solved to determine a model-optimal policy π∗.

Algorithm 1 Fast learning for control
1: set policy to random . policy initialization
2: loop
3: execute policy . interaction
4: record collected experience
5: learn probabilistic dynamics model . bottom layer
6: loop . policy search
7: simulate system with policy π . intermed. layer
8: compute expected long-term cost for π, eq. (2)
9: improve policy . top layer

10: end loop
11: end loop

learned (Section II-B). Given the model of the transition
dynamics and a policy π, the expected long-term cost in
equation (2) is evaluated. This policy evaluation requires the
computation of the predictive state distributions p(xt) for
t = 1, . . . , T (intermediate layer in Figure 1, Section II-C).
At the top layer (Section II-D), the policy parameters ψ are
optimized based on the result of the policy evaluation. This
parameter optimization is called an indirect policy search.
The search is typically non-convex and requires iterative
optimization techniques. The policy evaluation and policy
improvement steps alternate until the policy search converges
to a local optimum. If the transition dynamics are given, the
two top layers correspond to an optimal control problem.

A. High-Level Summary of the Learning Approach

A high-level description of the proposed framework is
given in Algorithm 1. Initially, we set the policy to random
(line 1). The framework involves learning in two stages:
First, when interacting with the system (line 3) experience
is collected (line 4) and the internal probabilistic dynam-
ics model is updated based on both historical and novel
observations (line 5). Second, the policy is refined in the
light of the updated dynamics model (loop over lines 7–9)
using approximate inference and gradient-based optimization
techniques for policy evaluation and policy improvement,
respectively. The model-optimized policy is applied to the
real system (line 3) to gather novel experience (line 4).

The subsequent model update (line 5) accounts for pos-
sible discrepancies between the predicted and the actually
encountered state trajectory. With increasing experience, the
probabilistic model describes the dynamics well in regions
of the state space that are promising, that is, regions along
trajectories with low expected cost.

B. Bottom Layer: Learning the Transition Dynamics
We learn the short-term transition dynamics f in equa-

tion (1) with Gaussian process models [13]. A GP can be
considered a distribution over functions and is utilized for
state-of-the-art Bayesian non-parametric regression [13]. GP
regression combines both flexible non-parametric modeling
and tractable Bayesian inference.

The GP dynamics model takes as input a representation
of state-action pairs (xt−1,ut−1). The GP targets are a
representation of the consecutive states xt = f(xt−1,ut−1).
The dynamics models are learned using evidence maximiza-
tion [13]. A key advantage of GPs is that a parametric
structure of the underlying function does not need to be
known. Instead, an adaptive, probabilistic model for the
latent transition dynamics is inferred directly from observed
data. The GP also consistently describes the uncertainty
about the model itself.

C. Intermediate Layer: Approximate Inference for Long-
Term Predictions

For an arbitrary pair (x∗,u∗), the GP returns a Gaus-
sian predictive distribution p(f(x∗,u∗)). Thus, when we
simulate the probabilistic GP model forward in time, the
predicted states are uncertain. We therefore need to be able
to predict successor states when the current state is given by
a probability distribution. Generally, a Gaussian distributed
state followed by nonlinear dynamics (as modeled by a
GP) results in a non-Gaussian successor state. We adopt the
results from [4], [11] and approximate the true predictive
distribution by a Gaussian with the same mean and the same
covariance matrix (exact moment matching). Throughout all
computations, we explicitly take the model uncertainty into
account by averaging over all plausible dynamics models
captured by the GP. To predict a successor state, we average
over both the uncertainty in the current state and the uncer-
tainty about the possibly imprecise dynamics model itself.
Thus, we reduce model bias, which is one of the strongest
arguments against model-based learning algorithms [2], [3],
[16].

Although the policy is deterministic, we need to consider
distributions over actions: For a single deterministic state
xt, the policy will deterministically return a single action.
However, during the forward simulation, the states are given
by a probability distribution p(xt), t = 0, . . . , T . Therefore,
we require the predictive distribution p(π(xt)) over actions
to determine the distribution p(xt+1) of the consecutive state.
We focus on nonlinear policies π represented by a radial
basis function (RBF) network. Therefore,

π(x∗) =
N∑
i=1

βiφi(x∗) , (3)

where the basis functions φ are axis-aligned Gaussians
centered at µi, i = 1, . . . , N . An RBF network is equivalent
to the mean function of a GP or a Gaussian mixture model.
In short, the policy parameters ψ of the RBF policy are
the locations µi and the weights βi as well as the length-
scales of the Gaussian basis functions φ and the amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

distance

co
st

quadratic
saturating

Fig. 2. Quadratic (red, dashed) and saturating (blue, solid) cost functions.
The x-axis shows the distance of the state to the target, the y-axis shows the
corresponding immediate cost. In contrast to the quadratic cost function, the
saturating cost function can encode that a state is simply “far away” from
the target. The quadratic cost function pays much attention to how “far
away” the state really is.

of the latent policy π. The RBF policy in equation (3) allows
for an analytic computation of a distribution over actions as
required for consistent predictions.

The GP model for the transition dynamics and the RBF
policy allow for the computation of the joint Gaussian
probability distribution p(xt,ut), which is required to com-
pute the distribution p(xt+1) of the consecutive state via
moment matching. By iteration, we can thus compute an
approximate distribution of the state sequence x0, . . . ,xT ,
which is required to evaluate the expected long-term cost in
equation (2).

D. Top Layer: Policy Optimization

The optimization problem at the top layer in Figure 1 cor-
responds to finding policy parameters ψ∗ that minimize the
expected long term finite-horizon cost V πψ in equation (2).

We employ a conjugate gradients minimizer, which re-
quires the partial derivatives of the value function with
respect to the policy parameters. These derivatives are
computed analytically by repeated application of the chain
rule [12]. Hence, our approach is a gradient-based policy
search method.

III. COST FUNCTION

We assume that the immediate cost function c in equa-
tion (2) does not incorporate any solution-specific knowledge
such as penalties on the control signal or speed variables (in
regulator problems). Only the target state xtarget is given. An
autonomous learner must be able to learn the remainder of
the task by itself: If the system reaches the target state but
overshoots due to too high velocities, the learning algorithm
should account for this kind of failing in a next trial. We
employ a cost function that solely uses a geometric distance
d of the current state to the target state. Thus, overshooting
causes higher long-term cost than staying close to the target.

A cost function commonly used in optimal control (par-
ticularly in combination with linear systems) is the quadratic
cost (red, dashed in Figure 2). One problem with the
quadratic cost function is that the long-term cost in equa-
tion (2) is highly dependent on the worst state along a pre-
dicted state trajectory. A second problem with the quadratic
cost is that the expected cumulative cost in equation (2) is
highly sensitive to details of a distribution that essentially

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

state

cost function
peaked state distribution
wide state distribution

(a) Initially, when the mean of the
state is far away from the tar-
get, uncertain states (red, dashed-
dotted) are preferred to more certain
states with a more peaked distribu-
tion (black, dashed). This leads to
initial exploration.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

state

cost function
peaked state distribution
wide state distribution

(b) Finally, when the mean of the
state is close to the target, cer-
tain states with peaked distributions
cause less expected cost and are
therefore preferred to more uncer-
tain states (red, dashed-dotted). This
leads to exploration once close to the
target.

Fig. 3. Automatic exploration and exploitation due to the saturating cost
function (blue, solid). The x-axes describe the state space. The target state
is the origin.

encode that the model has lost track of the state. In particular
in the early stages of learning, the predictive state uncertainty
may grow rapidly with the time horizon. To avoid an extreme
dependence on these arbitrary details, we instead use the cost
function

c(x) = 1− exp
(− a2

2 d(x,xtarget)2
)

(4)

that is locally quadratic but which saturates at unity for large
deviations d from the desired target xtarget (blue function,
solid, in Figure 2). In equation (4), the Euclidean distance
from the state x to the target state is denoted by d, and
the parameter a controls the width of the cost function. The
saturating cost function in equation (4) resembles the cost
function in human reasoning [5].

A. Exploration and Exploitation

The saturating cost function in equation (4) allows for
natural exploration even if the policy is greedy, that is,
it minimizes the expected long-term cost in equation (2).
This property is illustrated in Figure 3. If the mean of a
state distribution p(xt) is far away from the target xtarget, a
wide state distribution is more likely to have substantial tails
in some low-cost region than a fairly peaked distribution
(Figure 3(a)). If we initially start from a state distribution
in a high-cost region, the saturating cost therefore leads to
automatic exploration by favoring uncertain states.

If the mean of the state distribution is close to the
target as in Figure 3(b), wide distributions are likely to
have substantial tails in high-cost regions. By contrast, the
mass of a peaked distribution is more concentrated in low-
cost regions. In this case, a greedy policy prefers peaked
distributions close to the target, which leads to exploitation.

Hence, even for a greedy policy, the combination of a
probabilistic dynamics model and a saturating cost function
leads to exploration as long as the states are far away from
the target. Once close to the target, a greedy policy does not
veer from a trajectory that lead the system to certain states
close to the target.

One way to encourage further exploration is to modify the
objective function in equation (2). Incorporation of the state

uncertainty itself would be an option, but it would lead to
extreme designs [8]. However, we are particularly interested
in exploring promising regions of the state space, where
“promising” is directly defined by the saturating cost function
c in equation (4). Therefore, we consider the variance of
the predicted cost, which can be computed analytically. To
encourage goal-directed exploration, we therefore minimize
the objective function

Ṽ π(x0) =
T∑
t=0

Ex[c(xt)] + b σx[c(xt)] . (5)

Here, σ denotes the standard deviation of the predicted cost.
For b < 0 uncertainty in the cost is encouraged, for b > 0
uncertainty in the cost is penalized.

What is the difference between the variance of the state
and the variance of the cost? The variance of the predicted
cost depends on the variance of the state: If the state dis-
tribution is fairly peaked, the variance of the corresponding
cost is always small. However, an uncertain state does not
necessarily cause a wide cost distribution: If the mean of
the state distribution is in a high-cost region and the tails of
the distribution do not substantially cover low-cost regions,
the uncertainty of the predicted cost is very low. The only
case the cost distribution can be uncertain is if a) the state
is uncertain and b) a non-negligible part of the mass of the
state distribution is in a low-cost region. Hence, using the
uncertainty of the cost for exploration avoids extreme designs
by exploring regions that might be close to the target.

Exploration-favoring policies (b < 0) do not greedily
follow the most promising path (in terms of the expected
cost (2)), but they aim to gather more information to find
a better strategy in the long-term. By contrast, uncertainty-
averse policies (b > 0) follow the most promising path
and after finding a solution, they never veer from it. If
uncertainty-averse policies find a solution, they presumably
find it quicker (in terms of number of trials required) than an
exploration-favoring strategy. However, exploration-favoring
strategies find solutions more reliably. Furthermore, at the
end of the day they often provide better solutions than
uncertainty-averse policies.

IV. RESULTS

Our proposed learning framework is applied to two under-
actuated nonlinear control problems: the Pendubot [15] and
the inverted pendulum. The under-actuation of both systems
makes myopic policies fail. In the following, we exactly
follow the steps in Algorithm 1.

A. Pendubot

The Pendubot depicted in Figure 4 is a two-link, under-
actuated robot [15]. The first joint exerts torque, but the
second joint cannot. The system has four continuous-valued
state variables: two joint angles and two joint angular ve-
locities. The angles of the joints, θ1 and θ2, are measured
anti-clockwise from upright. An applied external torque u ∈
[−3.5, 3.5] Nm controls the first joint. In our simulation, the
values for the masses and the lengths of the pendulums are

θ1

θ2

u

start

target

le
ar
n

Fig. 4. Pendubot. The control task is to swing both links up and to balance
them in the inverted position by exerting a torque to the first joint only.

m1 = 0.5 kg = m2 and `1 = 0.6 m = `2. The sampling
frequency is set to 13.3̄ Hz, which is fairly low for this kind
of problem: A sampling frequency of 2, 000 Hz is used in [9].

Starting from the position, where both joints hang down,
the objective is to swing the Pendubot up and to balance it in
the inverted position. Note that the dynamics of the system
can be chaotic.

Our cost function penalizes the Euclidean distance d from
the tip of the outer pendulum to the target state.

The width 1/a = 0.5 m of in the cost function in
equation (4) is chosen, such that the immediate cost is about
unity as long as the distance between the pendulum tip
and the target state is greater than the length `2 of the
outer pendulum. Thus, the tip of the outer pendulum has
to cross horizontal to significantly reduce the immediate
cost from unity. Initially, we set the exploration parameter
in equation (5) to b = −0.2 to favor more exploration in
predicted high-reward regions of the state space. We increase
the exploration parameter linearly, such that it reaches 0 in
the last trial. The learning algorithm is fairly robust to the
selection of the exploration parameter b in equation (5): In
most cases, we could learn the tasks with b ∈ [−0.5, 0.2].

Figure 5 sketches a solution to the Pendubot problem after
an experience of approximately 90 s. The learned controller
attempts to keep the pendulums aligned, which, from a
mechanical point of view, leads to a faster swing-up motion.

B. Inverted Pendulum (Cart-Pole)

The inverted pendulum shown in Figure 6 consists of a
cart with mass m1 and an attached pendulum with mass m2

and length `, which swings freely in the plane. The pendulum
angle θ is measured anti-clockwise from hanging down. The
cart moves horizontally on a track with an applied external
force u. The state of the system is given by the position x
and the velocity ẋ of the cart and the angle θ and angular
velocity θ̇ of the pendulum.

The objective is to swing the pendulum up and to balance
it in the inverted position in the middle of the track by simply
pushing the cart to the left and to the right.

We reported simulation results of this system in [12]. In
this paper, we demonstrate our learning algorithm in real
hardware. Unlike classical control methods, our algorithm
learns a model of the system dynamics in equation (1)
from data only. It is therefore not necessary to provide a
probably inaccurate idealized mathematical description of the
transition dynamics that includes parameters, such as friction,
motor constants, or delays. Since ` ≈ 125 mm, we set

applied torque

immediate reward

applied torque

immediate reward

applied torque

immediate reward

applied torque

immediate reward

applied torque

immediate reward

applied torque

immediate reward

Fig. 5. Illustration of the learned Pendubot swing up. Six snapshots of the
swing up (top left to bottom right) are shown. The cross marks the target
state of the tip of the outer pendulum. The green bar shows the applied
torque. The gray bar shows the immediate reward (negative cost plus 1). In
order to swing the Pendubot up, energy is induced first, and the Pendubot
swings left and then right up. Close to the target in the inverted position
(red cross), the controller does no longer apply significant torques and keeps
the Pendubot close to the target.

u

start state target state

Fig. 6. Inverted pendulum. The task is to swing the pendulum up and to
balance it in the inverted position in the middle of the track by applying
horizontal forces to the cart only.

the sampling frequency to 10 Hz, which is about five times
faster than the characteristic frequency of the pendulum.
Furthermore, we choose the cost function in equation (4)
with 1/a ≈ 0.07 m, such that the cost incurred does not
substantially differ from unity if the distance between the
pendulum tip and the target state is greater than `. The force
is constrained to u ∈ [−10, 10] N.

Following Algorithm 1, we initialized the learning system
with two trials of length T = 2.5 s, where random actions
(horizontal forces to the cart) were applied. The five seconds
of data collected in these trials were used to train a first
probabilistic dynamics model. Using this model to internally

Fig. 7. Inverted pendulum in hardware; snapshots of a controlled trajectory.
The pendulum is swung up and balanced in the inverted position close to
the target state (green cross). To solve this task, our algorithm required only
17.5 s of interaction with the physical system.

simulate the dynamics, the parameters of the RBF controller
were optimized. In the third trial, this controller is applied
to the real system. The controller manages to keep the
cart in the middle of the track, but the pendulum does
not go beyond horizontal—the system never experienced
states where the pendulum is above horizontal. However,
it takes the new observations into account and re-train the
probabilistic dynamics model. With the uncertainty in the
predictions decreases and a good policy for to the updated
model is found. Applying this new policy for another 2.5 s
leads to the fourth trial where the controller swings the
pendulum up, but drastically overshoots. However, for the
first time states close to the target state ware encountered.
Taking these observations into account, the dynamics model
is updated, and the corresponding controller is learned. In the
fifth trial, the controller learned to reduce the angular velocity
substantially since falling over leads to high expected cost.
After two more trials, the learned controller can solve the
cart-pole task based on a total of 17.5 s experience only.
Figure 7 shows snapshots of a test trajectory of 20 s length.
A video showing the entire learning process can be found at
http://mlg.eng.cam.ac.uk/marc/.

Our learning algorithm is very general and worked imme-
diately when we applied it to real hardware. Since we could
derive all required parameters (width of the cost function and
time sampling frequency) from the length of the pendulum,
no parameter tuning was necessary.

V. DISCUSSION

Our approach learns very fast in terms of the amount of
experience required to solve a task. However, the current
implementation requires about ten minutes of CPU time
on a standard PC per policy search. The most demanding
computations are the approximate inference based on mo-
ment matching and the computation of the derivatives, which
require O(Tn2D3) operations. Here T is the prediction
horizon, n the size of the dynamics training set, and D
is the dimension of the state. Once the policy has been
learned, the policy can be implemented and applied in real
time (Section IV-B).

The model of the transition dynamics f in equation (1) is
probabilistic, but the internal simulation is fully determinis-
tic: For a given policy parameterization and an initial state

http://mlg.eng.cam.ac.uk/marc/

distribution p(x0) the approximate inference is deterministic
and does not require any sampling. This property is still
valid if the transition dynamics f and/or the policy π
are stochastic. Due to the deterministic simulative model,
any optimization method for deterministic functions can be
employed for the policy search.

The algorithms directly generalizes to multiple actuators
by using a policy in equation (3) with multivariate outputs.
With this approach, we successfully applied our learning
framework to the Pendubot task with two actuators (not
discussed in this paper.)

We have demonstrated learning in the special case where
we assume that the state is fully observable. In principle,
there is nothing to hinder the use of the algorithm when
observations are noisy. After learning a generative model for
the latent transitions, the hidden state can be tracked using
the GP-ADF filter proposed in [4]. The learning algorithm
and the involved computations generalize directly to this
setting.

Our experience is that the probabilistic GP dynamics
model leads to fairly robust controllers: First, since the
model can be considered a distribution over all models that
plausibly explain the experience, incorporation of new ex-
perience does not usually make previously plausible models
implausible. Second, the moment-matching approximations
in the approximate inference is a conservative approxima-
tion of a distribution: Let q be the approximate Gaussian
distribution that is computed by moment matching and p be
the true predictive distribution, then we minimize KL(p||q).
Minimizing KL(p||q) ensures that q is non-zero where the
true distribution p is non-zero. This is an important issue
in the context of coherent predictions and, therefore, robust
control: The approximate distribution q is not overconfident,
but can be too cautious since it captures all modes of the
true distribution as shown by [7]. If we still can learn a con-
troller using the admittedly conservative moment-matching
approximation, the controller is expected to be robust.

If a deterministic dynamics model is used, incorporation
of new experience can drastically change the model. We
observed that this model change can have strong influence to
the optimization procedure [12]. In case of the Pendubot, we
have experimental evidence that the deterministic learning
algorithm cannot explore the state space sufficiently well,
that is, it never came close to the target state at all.

The general form of the saturating cost function in
equation (4) can be chosen for arbitrary control problems.
Therefore, it is not problem specific. However, it clearly
favors the incorporation of uncertainty into dynamics models.
Hence, it can be considered algorithm-specific.

Our learning algorithm does not require an explicit global
model of the value function V π , but instead evaluates the
value function for an initial state distribution p(x0). Although
global value function models are often used to derive an
optimal policy they are an additional source of errors. It is
often unclear how an error in the value function affects to
policy if the value function model is not exact.

VI. CONCLUSION

We proposed a general framework for efficient reinforce-
ment learning in the context of motor control problems. The
key ingredient of this framework is a probabilistic model
for the transition dynamics, which mimics two important
features of biological learners: the ability to generalize and
the explicit incorporation of uncertainty into the decision-
making process. We successfully applied our algorithm to
the simulated Pendubot and the cart-pole problem in real
hardware demonstrating the flexibility and the success of
our approach. To our best knowledge, we report an unprece-
dented speed of learning for both tasks.

REFERENCES

[1] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using Inaccurate
Models in Reinforcement Learning. In Proceedings of the 23rd
International Conference on Machine Learning, pages 1–8, Pittsburgh,
PA, USA, June 2006.

[2] Christopher G. Atkeson and Juan C. Santamarı́a. A Comparison of
Direct and Model-Based Reinforcement Learning. In Proceedings of
the International Conference on Robotics and Automation, 1997.

[3] Christopher G. Atkeson and Stefan Schaal. Robot Learning from
Demonstration. In Proceedings of the 14th International Conference
on Machine Learning, pages 12–20, Nashville, TN, USA, July 1997.
Morgan Kaufmann.

[4] Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic
Moment-based Gaussian Process Filtering. In Proceedings of the
26th International Conference on Machine Learning, pages 225–232,
Montreal, Canada, June 2009. Omnipress.

[5] Konrad P. Körding and Daniel M. Wolpert. The Loss Function of
Sensorimotor Learning. In Proceedings of the National Academy of
Sciences, volume 101, pages 9839–9842, 2004.

[6] Konrad P. Körding and Daniel M. Wolpert. Bayesian Decision Theory
in Sensorimotor Control. Trends in Cognitive Sciences, 10(7):319–326,
June 2006.

[7] Malte Kuss and Carl E. Rasmussen. Assessing Approximations for
Gaussian Process Classification. In Advances in Neural Information
Processing Systems 18, pages 699–706. The MIT Press, Cambridge,
MA, USA, 2006.

[8] David J. C. MacKay. Information-Based Objective Functions for
Active Data Selection. Neural Computation, 4:590–604, 1992.

[9] Rowland O’Flaherty, Ricardo G. Sanfelice, and Andrew R. Teel.
Robust Global Swing-Up of the Pendubot Via Hybrid Control. In
Proceedings of the 2008 American Control Conference, pages 1424–
1429, Seattle, WA, USA, June 2008.

[10] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An
Analytic Solution to Discrete Bayesian Reinforcement Learning. In
Proceedings of the 23rd International Conference on Machine Learn-
ing, pages 697–704, Pittsburgh, PA, USA, 2006. ACM.

[11] Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl E.
Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—
Application to Multiple-Step Ahead Forecasting. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
volume 2, pages 701–704, April 2003.

[12] Carl E. Rasmussen and Marc P. Deisenroth. Recent Advances in
Reinforcement Learning, volume 5323 of Lecture Notes in Computer
Science, chapter Probabilistic Inference for Fast Learning in Control,
pages 229–242. Springer-Verlag, November 2008.

[13] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, MA, USA, 2006.

[14] Stefan Schaal. Learning From Demonstration. In Advances in Neural
Information Processing Systems 9, pages 1040–1046. The MIT Press,
Cambridge, MA, USA, 1997.

[15] Mark W. Spong and Daniel J. Block. The Pendubot: A Mechatronic
System for Control Research and Education. In Proceedings of the
Conference on Decision and Control, pages 555–557, 1995.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Adaptive Computation and Machine Learning. The MIT
Press, Cambridge, MA, USA, 1998.

	Introduction
	General Setup
	High-Level Summary of the Learning Approach
	Bottom Layer: Learning the Transition Dynamics
	Intermediate Layer: Approximate Inference for Long-Term Predictions
	Top Layer: Policy Optimization

	Cost Function
	Exploration and Exploitation

	Results
	Pendubot
	Inverted Pendulum (Cart-Pole)

	Discussion
	Conclusion
	References

