
Linear Pattern Matching with Swaps for Short Patterns

Tomá̌s Flouri Xhevi Qafmolla

Abstract— The Pattern Matching problem with swaps is a
variation of the classical pattern matching problem. It consists
of finding all the occurrences of a pattern P in a text T ,
when an unrestricted number of disjoint local swaps is allowed.
In this paper, we present a new, efficient method for the
Swap Matching problem with short patterns. In particular,
we present an algorithm constructing a non-deterministic finite
automaton for a given pattern P which, when transformed to
a deterministic finite automaton, serves as a pattern matcher
running in time O(n), where n is the length of the input text
T .

I. INTRODUCTION

Finding all the occurrences of a given pattern in a text,
i.e. the classical pattern matching, is one of the basic and
most well-studied problems in computer science with many
practical appliances in many areas such as computational
biology, communications, data mining and multimedia. For
example the Boyer-Moore algorithm is implemented in the
emacs’ “s” command, or in UNIX’s “grep”. UNIX’s “diff”
command uses the longest common subsequence algorithm
[9] presented by Chvatal et al. since 1972.

The tremendous and continuous expansion of these fields,
however, implied the need of a more generalized theoret-
ical foundation of the pattern matching concept. Research
has emerged in two directions: generalized matching and
approximate matching. In generalized matching one seeks
exact occurrences of the pattern in the text, but matching
doesn’t mean equality. Instead, matching is done with “don’t
cares”, less-than matching, or matching relation defined by
a graph on the alphabet. In approximate matching one seeks
to find approximate matches of the pattern. The closeness of
a match is measured in terms of the number of primitive
operations necessary to convert the string into an exact
match. This number is called the edit distance, also called
the Levenshtein distance, between the string and the pattern.
Primitive operations can be insertion, deletion, substitution
and transposition, or swapping.

In our paper we focus on the problem of Pattern Matching
with Swaps, also known as the Swap Matching problem.
In Swap Matching context, we say that the patternP of
length m matches the given textT of length n at location
i, when an unrestricted number of adjacent characters from
the pattern can be swapped in order to become identical

This research has been partially supported by the Ministry of Education,
Youth and Sports under research program MSM 6840770014, andby the
Czech Science Foundation as project No. 201/09/0807.

T. Flouri and X. Qafmolla are with the Faculty of Electrical
Engineering, Department of Computer Science and Engineer-
ing, Czech Technical University in Prague, Czech Republic
{flourt1,qafmox1}@fel.cvut.cz

with a substring ofT starting or ending ati, given that all
swaps are disjoint, i.e. no one character is involved in more
than one swap. BothP and T are sequences of characters
drawn from the same finite character setΣ of size σ. To
provide just a few applications of this definition, we could
name mistyping in text pattern search, transmission noise
adjusting in communications or finding of close mutations
in biology. For example in gene mutation phenomenon we
observe swaps in a disease called Spinal Muscular Atrophy
[14]. Such cases serve as a convincing pointer to further
theoretical study of swaps in computer science.

The Swap Matching problem was introduced in 1995, as
one of the open problems in nonstandard string matching, by
Muthukrishnan [16]. Amir et al. have since then done exces-
sive research in this area producing many interesting results.
They first provided an algorithm ofO(nm

1
3 log m log σ)

time complexity for an alphabet set of size two (see [2]).
They also showed that alphabets of larger sizes could be re-
duced to the size of two having anO(log2 σ) time overhead.
Later in 1998, Amir et al. also studied some restrictive cases
[5] for which they could obtain an algorithm ofO(n log2 m)
time complexity. Back in the year 2000, again Amir et al.
tried to reduce the overhead of their 1998 algorithm, with the
method of alphabet size reduction [3], introducing now an
overhead of onlyO(log σ). More recently, in another paper
in 2003, Amir et al. found a new solution ofO(n log m log σ)
time, using overlap matching [4]. It is important to mention
that all the above streams of research are based on the Fast
Fourier Transformation (FFT).

The first efficient solution without using FFT was in-
troduced in 2008 by Iliopoulos and Rahman [13]. Their
approach consisted in introducing graph theory for initially
modeling the problem and then, using bit parallelism, they
developed an efficient algorithm running atO((n+m) log m)
time complexity. The constraint given was that the pattern
size must be of a comparable size with the word size in
the target machine, thus limiting their algorithm for small
patterns.

More recently, in 2009, Cantone et al. continued in
bit parallelism approach to introduce an algorithm named
CROSS-SAMPLING [7]. The algorithm was characterized by
a worst-case time complexity ofO(nm) having aO(σ) space
complexity for short patterns fitting in a few machine words.
In the same year, Campanelli et al. presented an efficient
way [6] for solving the Swap Matching problem with small
patterns atO(nm2) time complexity in general. Their al-
gorithm was named BACKWARDS-CROSS-SAMPLING and
inherited many properties of the original CROSS-SAMPLING

algorithm, but was based on a right-to-left scan of the

text. Albeit having a worse time complexity, BACKWARDS-
CROSS-SAMPLING proved to have better results in practice
(for small patterns) than the other algorithms.

In this paper, we introduce an algorithm that runs in
linear time. Our method uses finite automata (see [10], [15])
and is based on preprocessing the pattern, an operation we
carry out only once at the beginning. Additionally, once the
preprocessing is done, we can search in arbitrary many texts
for the pattern without the need of preprocessing the pattern
again each time.

The rest of this article is organized as follows. In section 2
we evoke some of the preliminary definitions needed for the
purpose of our paper. In section 3 we present our algorithm
along with the necessary proofs. In section 4 we demonstrate
the implementation of our solution with an example. Section
5 serves as an overview of the time and space complexities.
Finally, in section 5 we draw some conclusions and discuss
further future work in our research.

II. PRELIMINARIES

An alphabetΣ is a non-empty, finite set of symbols. A
stringx over a given alphabet is a finite sequence of symbols.
Σ∗ denotes the set of all strings over alphabetΣ including
the emptystring, denoted byε. A string of lengthm ≥ 0
can be represented as a finite arrayx[1 . . . m]. The length of
the string can also be presented as|x| = m. A string y is a
substringof x if and only if x = uyv, wherex, y, u, v ∈ Σ∗.
A substringy of a string x can be represented as a finite
arrayx[i . . . j], i andj denoting the starting and the ending
position ofy in x, respectively. We define the concatenation
operation on the set of strings in the usual way: ifx andy

are strings over alphabetΣ, then the concatenation of these
strings isxy. In particular, form = 0 we obtain the empty
string, denoted byε. For any setA we useP(A) to denote
the set of all subsets ofA. P(A) is called thepowersetof
A. A function P : X → {true, false} is called a predicate
on X.

Since our algorithms are based on finite automata,
we give brief definitions to related concepts below.
A non-deterministic finite automatonM is a quintuple
(Q,Σ, δ, I, F), where: Q is a finite set of states,Σ is an
input alphabet,δ is a mappingδ : Q × (Σ ∪ {ε}) 7→ P(Q)
called a state transition function,I ⊆ Q is a set of initial
states, andF ⊆ Q is a set of final states. Adeterministic
finite automatonM = (Q,Σ, δ, q0, F) is a special case of
non-deterministic finite automaton such that the transition
mapping is a functionδ : Q×Σ 7→ Q and there is only one
initial stateq0 ∈ Q.

Theextended transition functionδ∗ of a non-deterministic
finite automaton is defined inductively as follows:

1) δ∗(q, ε) = {q},
2) δ∗(q, us) =

⋃
p∈δ∗(q,u) δ(p, s).

The left languageof stateq of a non-deterministic automaton
M = (Q,Σ, δ, q0, F) is defined as

←−
LM (q) = {u | q ∈

δ∗(q0, u)}. The language accepted by a non-deterministic
finite automatonM = (Q,Σ, δ, I, F) is defined asLM =
{ u | p ∈ δ∗(q, u), q ∈ I ∧ p ∈ F }. A configuration

of a non-deterministic finite automaton is the relation⊢M⊂
(Q × Σ∗) × (Q × Σ∗). For example, ifp ∈ δ(q, a) then
(q, aw) ⊢M (p,w), for arbitraryw ∈ Σ∗.

The extended transition functionδ∗ of a deterministic
finite automaton is defined inductively as follows:

1) δ∗(q, ε) = q,
2) δ∗(q, us) = δ(δ∗(q, u), s).

The language accepted by a deterministic finite automaton
M = (Q,Σ, δ, q0, F) is defined asLM = { u | p ∈
δ∗(q0, u) ∧ p ∈ F }.

Finite automataM1 and M2 are said to beequivalentif
they accept the same language, that isL(M1) = L(M2).

Subset constructionis a process transforming a non-
deterministic finite automaton into an equivalent determin-
istic finite automaton. IfM = (Q,Σ, δ, I, F) is a non-
deterministic finite automaton andM ′ is the deterministic
finite automaton obtained by subset construction fromM ,
then M ′ is of the form M ′ = (P(Q),Σ, δ′, I, F ′) and it
holds:

1) δ′(B, s) =
⋃

q∈B δ(q, s), ∀B ∈ P(Q),
2) F ′ = { B | B ∈ P(Q) ∧ B ∩ F 6= ∅ }.

Transition diagram of a finite automaton M =
(Q,Σ, δ, q0, F) is a directed graph such that

• for each stateq ∈ Q, there exists exactly one node
labeled byq drawn as circle or oval,

• the graph has an arc from nodeq to nodep labeled by
s if and only if M has a transition labeled bys leading
from stateq to statep,

• the initial state has an-intransition with no source,
• final states are drawn as two concentric circles or ovals.

The transition table of a finite automatonM =
(Q,Σ, δ, I, F) is a table consisting of|Q|+1 rows and|Σ|+1
columns with the first row and first column indexed by 0. A
cell of the table is indicated by the pair(i, j) wherei denotes
the row andj the column. Cells(0, 1) upto (0, |Σ|) contain
each a uniquex ∈ Σ. Cells (1, 0) upto (|Q|, 0) contain a
uniqueq ∈ Q. The content of cells(i, j) where i 6= 0 and
j 6= 0 is the mappingδ([i, 0], [0, j]).

A swap permutationfor a stringx, where|x| = m, is a
permutationπ : {0, . . . ,m − 1} 7→ {0, . . . ,m − 1} such
that:

1) if π(i) = j thenπ(j) = i (characters are swapped).
2) for all i, π(i) ∈ {i−1, i, i+1} (only adjacent characters

are swapped).
3) if π(i) 6= i thenx[π(i)] 6= x[i] (identical characters are

not swapped).

For a given stringx and a swap permutationπ we
denoteπ(x) = x[π(0)].x[π(1)]. · · · .x[π(m−1)] theswapped
versionof x.

For a given stringT representing the text and stringP
representing the pattern, where|T | = n and |P | = m, we
say thatP has a swapped match at locationi, if there exists
a swapped versionP ′ of P , such thatP ′ has an exact match
with T starting at locationi, i.e. π(P) = T [i−m + 1 . . . i].

III. A LGORITHM

In this section, we present an algorithm for solving
the swap matching problem. The algorithm constructs a
non-deterministic finite automaton which can be transformed
to an equivalent deterministic finite automaton serving as a
pattern matcher. We first present an algorithm which, given
a patternP , constructs a deterministic automaton accepting
the languageL = { π(P) } for all swap permutationsπ.
We then extend the first algorithm so that given a pattern
P , constructs a so-calledsearching non-deterministic
automatonwhich accepts the languageL = { x.π(P) }
for all x ∈ Σ, whereΣ represents the alphabet over which
patternP was constructed.

Lemma 1:Given a patternP , Algorithm 1 constructs a
deterministic finite automatonM = (Q,Σ, δ, 0, F) accepting
languageL = { π(P) } for all swap permutationsπ.

Proof: By strong induction. LetR(n) be a predicate
defined over all integersn. PredicateR(n) is true, if the
automatonM = (Q,Σ, δ, 0, F) constructed by Algorithm
1 accepts the languageL = { π(P [1 . . . n) } for all swap
permutationsπ. We define the base case and the inductive
step in the following manner:

(1) Base case:R(2) is true.
(2) Inductive step:R(2), . . . , R(n)⇒ R(n + 1)

Given an alphabetΣ = {x1, x2} and a stringx = x1x2,
the two possible swap versions of the string arex1x2 and
x2x1. The automatonM constructed by Algorithm 1 can
have the following configurations:

(0, x1x2w) ⊢M (1, x2w) ⊢M (2, w)
(0, x2x1w) ⊢M (1′, x1w) ⊢M (2, w)

wherew ∈ Σ∗. Thus, the language accepted by automaton
M is L = {x1x2, x2x1} and the base case holds.

Suppose we have a patternP , where |P | = n + 1. By
definition, symbolP [n + 1] can only be swapped with the
adjacent symbolP [n]. Thus, the set of all swapped versions
of P is { π(P [1 . . . n]).P [n+1] }∪{ π(P [1 . . . n−1]).P [n+
1].P [n] }, and we will prove this statement.

Suppose we have three automata,Mn−1 =
(Qn−1,Σ, δn−1, 0, Fn−1), Mn = (Qn,Σ, δn, 0, Fn)
andMn+1 = (Qn+1,Σ, δn+1, 0, Fn+1) constructed over the
patterns P [1 . . . n − 1], P [1 . . . n] and P [1 . . . n + 1]
respectively, whereFn−1 = {n − 1}, Fn = {n}
and Fn+1 = {n + 1}. Their transition diagrams are
depicted in Fig. 1–3. According to the assumption in the
inductive step, automataMn−1 and Mn accept languages
LMn−1

= {π(P [1 . . . n − 1]} and LMn
= {π(P [1 . . . n]}

respectively, for all swap permutationsπ. Trivially from
Algorithm 1 it holds that the transition function of an
automaton constructed over patternP [1 . . . n + 1] is
a superset of the transition function of an automaton
constructed over patternP [1 . . . n]. Specifically, it holds
that δn−1 ⊆ δn ⊆ δn+1. Moreover, from Algorithm 1

and Fig. 2–3, we can deduce thatδn(q, x) = δn+1(q, x)
for all q ∈ Qn \ {n − 1, n} and all x ∈ Σ and thus
←−
LMn

(q) =
←−
LMn+1

(q) for all q ∈ Qn. In a similar way we
deduce that

←−
LMn−1

(q) =
←−
LMn+1

(q) for all q ∈ Qn−1.
In addition, automatonMn+1 has the following configu-

rations over automatonMn:
(1) (n, xn+1w) ⊢Mn+1

(n + 1, w)
(2) (n− 1, xn+1xnw) ⊢Mn+1

(n′, xnw)
⊢Mn+1

(n + 1, w)

From (1),(2),
←−
LMn

(n) =
←−
LMn+1

(n) = LMn
and

←−
LMn−1

(n − 1) =
←−
LMn+1

(n − 1) = LMn−1
, it holds that

LMn+1
= { x.P [n + 1] | ∀x ∈ LMn

} ∪ { x.P [n +
1].P [n] | ∀x ∈ LMn−1

}. From the inductive step assumption
we haveLMn−1

= { π(P [1 . . . n − 1]) } and LMn
=

{ π(P [1 . . . n]) } and thusLMn+1
= { π[P [1 . . . n].P [n +

1], π(P [1 . . . n− 1]).P [n + 1].P [n] }.

Lemma 2:Given a patternP of length m, Algorithm
2 constructs a non-deterministic finite automatonM =
(Q,Σ, δ, {0}, {m}) accepting languageL = { w.π(P) } for
all w ∈ Σ∗.

Proof: We only provide a sketch of the proof: Since
0 ∈ δ(0, x) for all x ∈ Σ, it holds that0 ∈ δ∗(0, w) for
all w ∈ Σ∗. In other words,

←−
LM = { w | w ∈ Σ∗ }.

Using Lemma 1 we can prove thatLM = { w.π(P) } for
all w ∈ Σ∗.

Algorithm 1 : Construction of a deterministic finite au-
tomaton accepting languageL = { π(x) }

input : x = x1x2 . . . xm - input string over
alphabetΣ representing the pattern

output : M - deterministic finite automaton with
swaps, accepting languageL = {π(x)} for all
swap permutationsπ

Q← {0}1

δ ← ∅2

F ← {m}3

for i← 1 to m do Q← Q ∪ {i, i′}4

for i← 1 to m− 1 do5

δ(i− 1, x[i]) = {i}6

if x[i] 6= x[i + 1] then7

δ(i− 1, x[i + 1]) = {i′}8

δ(i′, x[i]) = {i + 1}9

end10

end11

δ(m− 1, x[m]) = {m}12

M ← (Q,Σ, δ, 0, F)13

Theorem 3:Given a patternP , Algorithm 1 constructs
a deterministic automatonM1 = (Q,Σ, δ, I, F), having at
most2|P | states, 1 initial state (0), 1 final state (F = {n})
and 3|P | − 2 transitions. AutomatonM1 accepts language
LM1

= { π(P) }.
Theorem 4:Given a patternP , Algorithm 2 constructs a

non-deterministic automatonM2 = (Q,Σ, δ, I, F), having

Algorithm 2 : Construction of a searching non-
deterministic finite automaton accepting languageL =
{ w.π(x) }

input : x = x1x2 . . . xm - input string over
alphabetΣ representing the pattern

output : M - searching non-deterministic finite
automaton with swaps

Q← {0}1

I ← {0}2

δ ← ∅3

F ← {m}4

for i← 1 to m do Q← Q ∪ {i, i′}5

for i← 1 to m− 1 do6

δ(i− 1, x[i]) = {i}7

if x[i] 6= x[i + 1] then8

δ(i− 1, x[i + 1]) = {i′}9

δ(i′, x[i]) = {i + 1}10

end11

end12

δ(m− 1, x[m]) = {m}13

for each x ∈ Σ do δ(0, x)← δ(0, x) ∪ {0}14

M ← (Q,Σ, δ, I, F)15

at most2|P | states, 1 initial state (I = {0}), 1 final state
(F = {n}) and 3|P | − 2 + |Σ| transitions. AutomatonM2

accepts languageLM2
= { x.π(P) } for all x ∈ Σ∗.

We present Theorem 3 and 4 without proof, as the results
can be trivially calculated from Fig. 1–3 and Lemma 1–2.

0 1 2 . . . n− 2 n− 1

1′ 2′ . . . (n− 2)′

x1 x2 x3 xn−2 xn−1

x2 x1 x3 x2 x4 xn−3
xn−1 xn−2

Fig. 1. Transition diagram of automatonMn−1 from Lemma 1

0 1 . . . n− 2 n− 1 n

1′ . . . (n− 2)′ (n− 1)′

x1 x2 xn−2 xn−1 xn

x2 x1 x3 xn−3 xn−1 xn−2 xn xn−1

Fig. 2. Transition diagram of automatonMn from Lemma 1

0 . . . n− 2 n− 1 n n + 1

. . . (n− 2)′ (n− 1)′ n′

x1 xn−2 xn−1 xn xn+1

x2 xn−3 xn−1 xn−2 xn xn−1 xn+1
xn

Fig. 3. Transition diagram of automatonMn+1 from Lemma 1

IV. EXAMPLE

In this section we demonstrate Algorithm 1 and 2 with a
short example.

The transition diagram of the automatonM1 created
by Algorithm 1 given the patternP = abcd is depicted
in Fig. 4. AutomatonM1 accepts the languageLM1

=
{ abcd, abdc, acbd, bacd, badc }. In this case,M is a de-
terministic finite automaton but in general, the automaton
obtained by Algorithm 1 is non-deterministic (whenP [i +
1] = P [i] for 1 ≤ i < |P |).

To transformM1 obtained from Algorithm 1 to a searching
automaton we modify the transition functionδ to δ(q, x) =
δ(q, x)∪{q} for all q ∈ I and allx ∈ Σ. The whole process is
described in Algorithm 2. The automatonM2, constructed by
Algorithm 2, accepts the languageLM2

= { x.π(abcd) } for
all swap permutationsπ and allx ∈ Σ∗. Again, for a given
patternP = abcd, automatonM2 created by Algorithm 2
is depicted in Fig. 5.M2 accepts the languageLM2

=
{ x.abcd, x.abdc, x.acbd, x.bacd, x.badc } for all x ∈ Σ∗.

From the theory of finite automata it holds that, for
every non-deterministic finite automaton exists an equivalent
deterministic finite automaton [17], [12]. The transformation
(non-deterministic to deterministic) can be done using the
method of subset construction.

We obtain the deterministic finite automatonM =
{Q, {a, b, c, d}, δ, {0}, {{0, 4}}, with its states and transition
function presented by the transition table in Table I. The
transition diagram ofM is depicted in Fig. 6.

The preprocessing phase is now complete and we can
search for swap matches of patternP in arbitrary text. As
an example, suppose a stringx = aabcddbadca. The trace
of the deterministic finite automatonM is:

({0}, aabcddbadca) ⊢M ({0, 1}, abcddbadca)
⊢M ({0, 1}, bcddbadca)
⊢M ({0, 1′, 2}, cddbadca)
⊢M ({0, 3}, ddbadca)
⊢M ({0, 4}, dbadca) Match
⊢M ({0}, badca)
⊢M ({0, 1′}, adca)
⊢M ({0, 1, 2}, dca)
⊢M ({0, 3′}, ca)
⊢M ({0, 4}, a) Match
⊢M ({0, 1}, ε)

The trace locates 2 matches of the swap versions of pattern
P . The first occurrence ends at position 5 of patternP

(substringabcd) and the second ends at position 10 (substring
badc). The occurrences are detected (accepted) by final state.

We also note that each symbol of the input textx was
read only once (linear search phase).

V. COMPLEXITIES

In this section, we present the resulting space and time
complexities of our algorithm. But first, we present a
proof on the number of all possible swapped versions of a

TABLE I

TRANSITION TABLE OF DETERMINISTIC AUTOMATONM ACCEPTING

LANGUAGE LM = { π(abcd) } FOR ALL SWAP PERMUTATIONSπ

a b c d

{0} {0, 1} {0, 1′} {0} {0}
{0, 1} {0, 1} {0, 1′, 2} {0, 2′} {0}
{0, 1′} {0, 1, 2} {0, 1′} {0} {0}

{0, 1′, 2} {0, 1, 2} {0, 1′} {0, 3} {0, 3′}
{0, 2′} {0, 1} {0, 1′, 3} {0} {0}
{0, 1, 2} {0, 1} {0, 1′, 2} {0, 2′, 3} {0, 3′}
{0, 3} {0, 1} {0, 1′} {0} {0, 4}
{0, 3′} {0, 1} {0, 1′} {0, 4} {0}

{0, 1′, 3} {0, 1, 2} {0, 1′} {0} {0, 4}
{0, 2′, 3} {0, 1} {0, 1′, 3} {0} {0, 4}
{0, 4} {0, 1} {0, 1′} {0} {0}

0 1 2 3 4

1′ 2′ 3′

a b c d

b a c b d c

Fig. 4. Finite automatonM accepting languageLM = { π(abcd) } for
all swap permutationsπ.

0 1 2 3 4

1′ 2′ 3′

a, b, c, d

a b c d

b a c b d c

Fig. 5. Finite automatonM accepting languageLM = { x.π(abcd) }
for all swap permutationsπ and allx ∈ Σ∗.

patternP which will aid us on proving the space complexity.

Lemma 5:Given a string x of size n ≥ 2, the
number of distinct swapped versions ofx is exactly
(1+

√
5)n+1−(1−

√
5)n+1

2n+1
√

5
.

Proof: Suppose we have a patternP [1 . . . n + 1]
and 3 automata,Mn+1, Mn and Mn−1, constructed by
Algorithm 1. AutomatonMn+1 is constructed over pattern
P [1 . . . n + 1], Mn over patternP [1 . . . n] and Mn−1 over
P [1 . . . n − 1]. From the proof of Lemma 1 it holds that
the languages accepted byMn+1, Mn, Mn−1 areLMn+1

=
{ π[P [1 . . . n].P [n + 1], π(P [1 . . . n − 1]).P [n + 1].P [n] },
LMn

= { π[P [1 . . . n] } andLMn−1
= {π[P [1 . . . n − 1] },

respectively.
This means that|LMn+1

| = |LMn
|+|LMn−1

|, which forms
a recurrent formula for generating aFibonacci sequence
(see [8]). Then-th element of a Fibonacci sequence can
be calculated usingBinet’s formula[19], which is F (n) =
(1+

√
5)n−(1−

√
5)n

2n

√
5

.
For n = 2, 3, 4, Binet’s formula yields the following results:
F (2) = 1, F (3) = 2 andF (4) = 3. The number of swapped
versions of a patternP of size 2 and 3 is 2 and 3, respectively.
The sequence of the number of swapped versions of patterns
of size 2, 3, . . . n is the Fibonacci sequence shifted by one

element and thus the recurrent formulaFs, for finding the
swapped versions, isFs(n) = F (n + 1).

Theorem 6:Given a patternP of size m, Algorithm 1
constructs a non-deterministic finite automatonM , accepting
languageLM = { π(P) } for all swap permutationsπ, in
time O(m).

Theorem 7:Given a patternP of sizem and alphabetΣ,
Algorithm 2 constructs a non-deterministic finite automaton
M , accepting languageLM = { w.π(P) } for all w ∈ Σ∗

and all swap permutationsπ, in timeO(m).

Theorems 6–8 are trivial to prove. Algorithms 1–2
construct2m states and define at most two transitions for
each state by reading the pattern from left to right.

Theorem 8:The space complexity of the deterministic au-
tomatonMd, obtained by subset construction on automaton
Mnd constructed by Algorithm 2 over patternP of sizem,
is O(2m).

Proof: The language accepted by automatonMnd

consists ofk = (1+
√

5)m+1−(1−
√

5)m+1

2m+1
√

5
strings (Lemma 1

and 5). AutomatonMnd accepts the same language as an
Aho-Corasickfinite automaton (see [1], [18]) constructed
over a finite set of stringsS = {p1, p2, . . . , pk}, wherepi,
1 ≤ i ≤ k, are all possible, distinct swapped versions of
P . The space complexity of the deterministic Aho-Corasick
finite automaton isΘ(αβ) (see [18]), whereα is the size of
the alphabet andβ the sum of lengths of all strings in setS.
In our case,β = km, which indicates exponential size.

Theorem 9:The searching phase of the deterministic au-
tomatonMd, obtained by subset construction on automaton
Mnd constructed by Algorithm 2 over patternP of size n,
is O(n).

Proof: This is a property of deterministic automata
serving as pattern matchers. The input text is read from left
to right, symbol by symbol. For each symbola, a transition
from some stateq1 to a stateq2 is taken, according to the
transition function (δ(q1, a) = q2). The automaton detects
occurrences of swapped versions of the pattern inside the
input text by a transition to the final state.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a new, efficient algorithm
for the Swap Matching problem on short patterns with
a searching phase running in linear time. The algorithm
constructs a non-deterministic finite automaton which can
be transformed to a deterministic one, serving as a pattern
matcher. Our method is based on preprocessing the pattern,
an operation carried out only once at the beginning.

The main advantage of the method is that the preprocess-
ing is done only once at the beginning and the constructed
automaton can be used as a pattern-matcher for arbitrary
many texts without the need of preprocessing the pattern
again. The drawback of this method is the high (exponential)

0 0, 1 0, 1′, 2 0, 3 0, 4

0, 1′ 0, 1, 2 0, 2′, 3

0, 2′ 0, 1′, 3

0, 3′

c, d

a

b

b

c

a

d

a

b

c, d

cb
a d

d

c

ba

a

b
c, d

c

b

d

a

d
b

a
c

d

a
c

b

d

a

b

c

a

c, d

b

Fig. 6. Transition diagram of deterministic finite automatonM accepting languageLM = { abcd, abdc, acbd, bacd, badc }.

space complexity, which limits this method only for short
patterns.

REFERENCES

[1] A. Aho, M. Corasick. Efficient string matching: an aid to bibliographic
search.Communications of the ACM, volume 18 (6), pages 333–340,
1975

[2] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein and N. Lewen-
stein. Pattern Matching with Swaps.IEEE Symposium on Foundation
of Computer Science, pages 144–153, 1997

[3] A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein and N. Lewen-
stein. Pattern Matching with Swaps.Journal of algorithms, volume 37
(2), pages 247–266, 2000

[4] A. Amir, R. Cole, R. Harihan, M. Lewenstein, and E. Porat. Overlap
Matching. Information and Computation, volume 181 (1), pages 57–
74, 2003

[5] A. Amir, G. M. Landau, M. Lewenstein and N. Lewenstein. Efficient
special cases of pattern matching with swaps.Information Processing
Letters, volume 68 (3), pages 125–132, 1998

[6] M. Campanelli, D. Cantone and S. Faro. A New Algorithm for
Efficient Pattern Matching with Swaps.Proceedings of the 20th
International Workshop on Combinatorial Algorithms, 2009

[7] D. Cantone and S. Faro. Pattern matching with swaps for short patterns
in linear time.Software Seminar Conference 2009, volume 5404 of
Lecture Notes in Computer Science, pages 255–266, 2009

[8] Chandra, Pravin and Weisstein, Eric W. Fibonacci
Number. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/FibonacciNumber.html

[9] V. Chvatal, D. A. Klarner and D. E. Knuth. Selected combinatorial
research problems.Technical Report STAN-CS-72-292, Stanford Uni-
versity, 1972

[10] Crochemore, M., Hancart, Ch. Automata for Matching Patterns, In:
Vol 2: Linear Modeling: Backgroung and Application. Handbook of
Formal Languages.

[11] Crochemore, M., Rytter, W.Jewels of Stringology. World Scientific,
New Jersey, 1994.

[12] J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction toautomata
theory, languages and computation, 2nd Edition.ACM SIGACT News,
Volume 32, 2001

[13] C. S. Iliopoulos and M. Sohel Rahman. A new model to solve swap
matching problem and efficient algorithms for short patterns.Software
Seminar Conference 2008, volume 4910 of Lecture Notes in Computer
Science, pages 316–327, 2008

[14] B. Lewin, Genes for sma: Multum in parvo.Cell, volume 8, pages
1–5, 1995

[15] Melichar, B., Holub, J., Polcar, J.Text Searching Algorithms. Available
on: http://stringology.org/athens/, release November
2005, 2005.

[16] S. Muthukrishnan. New results and open problems relatedto non-
standard stringology.Combinatorial Pattern Matching, volume 937 of
Lecture Notes in Computer Science, pages 298–317, 1995

[17] M.O. Rabin, D. Scott. Finite automata and their decisionproblems.
IBM Journal of Research and Development 3, Volume 3, pages 114–
125, 1959

[18] B. Smyth. Computing Patterns in Strings.Addison-Wesley, 2003
[19] Weisstein, Eric W. Binet’s Fibonacci Number For-

mula. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html

