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Abstract— Guaranteeing 100% fault free products is becom-
ing an emerging standard in many branches of manufacturing.
In this paper we examine the sensitivity of envelope analysis,
spectral kurtosis and cyclostationary analysis methods. The
objective was to determine the most suitable signal processing
method for bearing fault detection in final quality assessment
system for a production line of brushless DC motor. The
method’s sensitivity was evaluated on the most common bearing
faults: inner race, outer race, roller bearing fault and lack of
lubrication. Results indicated that cyclostationary analysis and
spectral kurtosis have better sensitivity then than the envelope
analysis.

I. INTRODUCTION

Fault detection techniques based on vibration signals are
one of the most commonly used approaches in the field
of fault detection. This is mainly due to their non–invasive
nature and their high reactivity to incipient faults.

Due to the fact that most mechanical faults occur in the
rolling bearing, they have been in the focus of the fault
detection research. The basic principles of the bearing fault
detection were laid by McFadden [10]. The characteristic
frequencies produced by a localized bearing faults were
device by Tandon [16]. Variety of signal processing tech-
niques have been used for bearing’s fault detection. Envelope
analysis as one of the most established methods has been
extensively used [8], [14]. Equally large is the number of
authors detecting the bearing faults using time–frequency
approaches such as wavelet transform [12], [14]. With the
development of the probabilistic bearing vibration model by
Randall [13], the usage of different methods such as spectral
kurtosis [15], [5] and cyclostationary analysis [9], [2] have
been employed.

In this research we investigated the problem of incipient
mechanical fault detection on a production line of blush-
less DC motors. Our results show that in cases of severe
bearing inner and outer race faults, the commonly used
envelope analysis is sufficient for the symptom generation
task. However the cases of improper bearing lubrication or
bearing damages due to inappropriate mounting have shown
to be difficult to detect by simple spectral analysis of the
signal’s envelope. The main problem in these cases is that
the extracted features resamble the fault–free case, so the
faulty EC motor under investigation is indistinguishable.

For resolving this difficulty we have analyzed the vibra-
tion signals using two methods: spectral kurtosis (SK) and
cyclostationary analysis. Both methods can be used for a
detection of frequency bands where the impulses generated
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by the localized bearing faults are most distinguishable, thus
simplifying the fault detection process..

In this work we have used a probabilistic bearing vibration
model, which in short is presented in Section II. A brief
overview of the theory behind the used signal processing
algorithms is given in Section IV. The remaining sections of
the paper cover the sensitivity analysis of each method.

II. MODEL OF BEARING VIBRATIONS

Most frequently, bearing faults include surface damage
of the inner or outer rings as well as the rolling bearing
elements. When such a fault appears, the passing rolling
element will generate an impact which will excite impulse
response s(t) of the observed system. These impacts will
occur on every pass of a roller element over the localized
fault, thus exiting periodic impulse responses s(t − iT ),
where T is the time between consecutive impacts. However,
due to random slip, as well as random speed fluctuations the
occurrence of these impulses will not be strictly periodic, but
some randomness should be introduced. Finally, the ‘quasi-
periodic impulse responses will now occur s(t − iT − τi),
where τi is the random fluctuations of the occurrence of
the ith impact. Consequently, the final model for vibrations
produced by a bearing with localized fault may be modeled
as [13]

x(t) =
∑
i

Ais(t− iT − τi) + n(t). (1)

where x(t) is the vibration signal, Ai is the random impact
amplitude. The addition part n(t) represents the contribution
of other vibration sources as well as the environmental
influence, which all togeather is considered as noise.

III. OBSERVED BEARING FAULTS

For the purpose of bearing fault detection we have ana-
lyzed the vibration signature of the observed motor for cases
when the motor was running with damaged bearing. The
conducted experiments covered 5 cases: fault–free motor,
bearing inner race fault, bearing outer race fault, foreign
debris fault and bearing without lubrication. The selected
faults cover the set of most common bearing faults that can
occur during motor’s production process.

All test were done under same controlled rotational speed
frot = 38Hz. During the tests none of the examined motors
was loaded. Both motor bearings were FAG 6205. The
characteristic bearing fault frequencies calculated for frot
are shown in Table I.



TABLE I
CALCULATED BEARING FREQUENCIES FOR FAG 6205

Bearing fault Frequency [Hz]
Ball passing frequency inner race (BPFI) 204.8Hz
Ball passing frequency outer race (BPFO) 135Hz
Fundamental train frequency (FTF) 15Hz
Ball spin frequency (BSF) 89Hz
Rolling element defect frequency 178Hz

IV. SIGNAL PROCESSING TECHNIQUES

A. Envelope analysis

The information about the type localized bearing fault can
be extracted by monitoring the time between two consecutive
impulses. Since the amplitude of these impacts can vary
sometimes can be quite difficult the estimate exactly when
does the impact occurs. The quasi-periodic occurrence of the
impulses leads to an idea of analyzing the spectrum of the
signal’s envelope.

The spectrum of the envelope signal can be obtained on
the basis of Hilbert transform, by calculating the spectrum
of the analytical signal xa(t), obtained from the observed
signal x(t). The analytical signal xa(t) is a complex signal
whose real part is the original signal x(t), and the imaginary
part is the Hilbert transform of the original signal x(t)

xa(t) = x(t) + iH [x(t)], (2)

where H [x(t)] is the Hilbert transform of the signal x(t)

H [x(t)] =
1
2π

∫ +∞

−∞

x(t)
t− τ dτ. (3)

The analytical signal has spectrum only in the positive
frequency range.

The envelope of the original signal x(t) can be obtained
by calculating the amplitude of the analytical signal (2)

a(t) =
√
x2(t) + H 2[x(t)]. (4)

1) Results from envelope analysis of the acquired signals:
The acquired vibration signals, were initially lowpass filtered
at 22 kHz, and then sampled at 60 kHz. The envelope anal-
ysis was applied without any additional signal conditioning.

Fault free The envelope spectrum of the fault–free motor
(cf. Figure 1 first subplot), running under nominal speed
frot, is dominated by two spectral components 10 × frot
and 20 × frot. The components are actually the first and
third harmonic of the power supply pulse width modulation
frequency fpwm = 5×frot. The factor 5 is due to the 5 poles
in the observed brushless DC (BLDC) motor.

Debris fault The case of debris fault yield almost contin-
uous envelope spectrum, cf. the second sub-plot in Figure 1.
Such spectrum is a result of high–energy random impulses
produced each time when some of the debris obstructed any
of the rotating roller elements.

Lack of lubrication fault The spectrum of lack of lubrica-
tion fault, third sub-plot in Figure 1, is very similar to the
one of the fault free case. Although it was expected for the
spectrum to contain some spectral component characteristic
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Fig. 1. Envelope spectra of the vibration signal

for the particular fault, the spectrum contains the same
spectral components as the fault–free case. Even more, the
amplitudes of the dominant spectral components are smaller
then the corresponding one in the fault–free case, which
might lead to a false conclusion that the motor runs better
in this case than in the fault–free one.

Unlike the lack of lubrication faults, the bearing inner and
outer race faults, shown in the last two sub-plots in Figure
1, are clearly distinguishable. Both are dominated by the
characteristic frequencies for the particular bearing faults,
BPFI and BPFO respectively.

From this simple analysis we can conclude that the en-
velope analysis is effective only in cases where the faults
excite significantly powerful impulses, like bearing inner and
outer race faults. Conversely, the pulses excited by the lack
of lubrication fault have significantly smaller amplitudes and
they are indistinguishable from the vibrations produced by
other vibration sources. In order to resolve this issue, we had
to analyze the vibration signals using different methods that
are more effective in detecting impulses masked by noise.

B. Spectral kurtosis

The spectral kurtosis (SK) method was firstly introduced
by [4]. It was used as a filter to recover randomly occurring
signals severely corrupted by additive stationary noise. As
with standard kurtosis, spectral kurtosis, takes high values
for frequency bands where the vibration signal x(t) defined
with (1) is dominated by the corresponding impulses. On the



other hand it takes low values for frequency bands where the
signal is dominated by the noise n(t) [3]. If we rewrite the
signal from (1) as

x(t) = y(t) + n(t), (5)

where
y(t) =

∑
i

Ais(t− iT − τi), (6)

than the SK values for the signal x(t) contaminated by
additive noise n(t) can be calculated as [3]

Kx(f) =
Ky(f)

[1 + ρ(f)]2
, (7)

where Ky(f) is the spectral kurtosis of the signal y(t), and
ρ(f) is the noise–to–signal ratio for that particular frequency
f . The value for Ky(f) can be obtained using the following
relation

Ky(f) =
S4y(f)− 2S2

2y(f)
S2

2y(f)
, (8)

where S2y(f) and S4y(f) are the second and fourth spectral
moments respectively. The maximum of (7), actually deter-
mines the frequency band where the signal–to–noise ratio in
the observed signal is the biggest and in the same time the
closest to the original, uncontaminated signal, y(t).

The statistical definition of SK given by the (8) bears
resemblance with the statistical definition of kurtosis. How-
ever the actual physical interpretation and its ability for
detection of non-stationary transients in signals is not so
obvious. One way to clarify this issue is to observe the
definition (8) through its “instantaneous” spectrum i.e. the
spectrum of the signal observed at particular moment t.
Averaging all these spectra over time we obtain the well
known Welch’s estimate of the power spectral density (PSD),
which is independent of time t. Observing the temporal
displacement of a particular frequency f , compared to its
average value computed by the PSD we obtain the value for
SK at that observed frequency. For non–stationary processes
these displacements will be more expressed then in the cases
of stationary processes. Consequently, we can use the SK as
a indicator for a frequency band where the signal’s non–
stationarities are most expressed.

This observation leads to the conclusion, that the spectral
kurtosis method searches for the optimal bandpass filter that
maximizes the kurtosis of the filtered signal. Since our goal is
to detect the irregular impacts in the signals, by maximizing
the spectral kurtosis we achieve this goal.

1) Results from spectral kurtosis analysis of the acquired
signals: By applying the SK method we obtained frequency
bands parameters for each fault where the observed bearing
fault impulses are most expressed. The envelope spectra of
the signals filteret in the propused frequency bands are shown
in Figure 2. The frequency band parameters of each fault are
presented in Table II.

Fault–free case The spectrum of the fault–free, as
expected, is dominated by the spectral components at
10× and 20× frot.

TABLE II
BANDPASS FILTER PARAMETERS

Fault Central Frequency fc Bandwidth Bw

Fault free 12.2kHz 1875Hz
Debris fault 10.1kHz 469.5Hz
Lack of lubrication 937.5Hz 1875Hz
Bearing inner race fault 5.3kHz 625Hz
Bearing outer race fault 312Hz 625Hz

Lack of lubrication Unlike the enevelope analysis of the
unfiltered signal, the spectrum of the envelope of the singal
filtered in the frequency band determined by the SK method
shows significant differences from the fault–free case. The
spectrum is dominated by the spectral component and FTF
(fundamental train frequency). This component is not vis-
ible in the fault-free state because presence of lubrication
damps the vibrations caused by the rolling bearing elements.
This effectively removes or significantly attenuates the FTF
spectral component. Since there is no lubricant to act as a
damper, these vibrations are clearly visible in the envelope
spectrum.

Apart from FTF component, lack of lubrication spectrum
contains spectral components of bearing outer race fault. This
is due to the fact that the BPFO is 9th harmonic of FTF, i.e.
BPFO = Z × FTF , where Z is the number of rolling
elements. The amplitude of this component is quite smaller
then the corresponding one in the case of pure outer ring
fault. Since the mentioned components are not present in the
fault free case they can be used as an additional feature for
detection of this fault.

Bearing inner and outer race fault The last two sub-plots
are the bearing inner and outer race fault. The spectrum is
dominated of the bearing inner race fault is dominated by
the BPFI and its 2nd harmonic. It should be noticed that
the amplitudes of these components are several times larger
then the amplitudes of the components in the fault-free case.
Similarly, the spectrum of the outer race fault is dominated
by the BPFO and its 2nd harmonic. Since the severity of the
outer race fault is quite bigger than the inner race fault, the
amplitudes of the characteristic frequencies are even larger
compared to the inner race fault.

The obtained results support the idea that by filtering the
vibration signals in a specific frequency band one can obtain
better sensitivity, especially for incipient faults, like in the
case of lack of lubrication fault. For further confirmation of
this idea we have analysed the same vibration signals using
different approach based on cyclostationarity of the vibration
signals produced by rotational machines.

C. Cyclostationary analysis

A random process x(t) is said to be Nth order cyclo-
stationary if its Nth order distribution function exhibits
periodicity with period T [11]

F (x1, x2, · · · , xn; t1, t2, · · · , tn) =
= F (x1, x2, · · · , xn; t1 +mT, t2 +mT, · · · , tn +mT )

(9)
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Fig. 2. Envelope spectra obtained in frequency bands which maximize the
kurtosis

The process x(t) is said to be wide–sense cyclostationary
if its mean E{x(t)} and its autocorrelation function Rx(t, τ)
are periodic with period T [11]

E{x(t)} = E{x(t+ T )}
Rx(t, τ) = Rx(t+ T, τ)

(10)

Due to the periodicity of the autocorrelation function and the
assumption that Fourier series expansion is convergent [6],
the autocorrelation function Rx(t, τ) can be expanded as

Rx(t, τ) =
+∞∑

n=−∞
Rαx (τ)ej2παt, (11)

where α = n/T also referred to as a cyclic frequencies,
and Rαx (τ) are the Fourier coefficients of the autocorrelation
function also referred to as cyclic autocorrelation function.

By analyzing the cyclic autocorrelation function it can be
shown that the signal x(t) and its frequency shifted version
x(t)ej2παt are correlated [7]

Rαx (τ) = E
{
x
(
t− τ

2

)
x
(
t+

τ

2

)
e−j2παt

}
. (12)

With a simple regrouping of the last equation we obtain

Rαx (τ) =

E


[
x
(
t+

τ

2

)
e−jπα(t+τ/2)

]
︸ ︷︷ ︸

u(t)

[
x
(
t− τ

2

)
e−jπα(t−τ/2)

]
︸ ︷︷ ︸

v(t)

 .

(13)

The multiplication with e±jπαt actually causes a frequency
shift of ±α of the signal x(t) in the frequency domain. This
leads to a conclusion that the cyclic autocorrelation function
of a random process x(t) is cross–correlation of a frequency
shifted versions u(t) and v(t) of the same signal x(t). In
should be noted that for α = 0 the relation(13) reduces to
a normal autocorrelation function. It can be concluded that
a signal exhibits cyclostationarity at cyclic frequency α if
Rαx (τ) 6= 0.

In the same way that the power spectrum can be obtained
by taking the Fourier Transform of the autocorrelation (the
Wiener-Khinchin theorem), taking the Fourier Transform of
the cyclic-autocorrelation with respect to the lag τ produces
the cyclic spectrum or also called cyclic spectral density

Sαx (f) =
∫ +∞

−∞
Rαx (τ)e−j2πfτdτ. (14)

Similarly, for α = 0 relation (14) reduces to the standard
power spectrum. Equivalently, we can define a spectral
autocoherence function based on a definition for coherence
as:

ραx(f) =
Sαx (f)

[Sαx (f + α/2)Sαx (f − α/2)]1/2
(15)

The function |ραx(f)| is bounded to the interval [0, 1], and
it represents a time–averaged correlation coefficient for the
process x(t) at two frequencies f ± α/2. The values of
autocoherence function that are close to 1 ραx(f) indicates
whether the observed signal exhibits cyclostationarity at
cyclic frequency α. Conversely, when ραx(f) ≈ 0 then
the observed signal has no cyclostationaryties at that cyclic
frequency

1) Results obtained by cyclostationary analysis: The plots
of the cyclic correlation (15), shown in Figure 3, can be
interpreted as following [1]:

1) The existence of a component at cyclic frequency α is
connected to a fault signature, and

2) The values of a particular component read on f axis
gives the signal-to-noise ratio of the fault for particular
frequencies f .

Interpretation using rule 1): The spectral cyclic coherence
(SCOH) for fault free case is shown in Figure 3(a). The
dominant cyclic frequencies are 5×, 10×, 15×, 20×frot. The
components of the frot are visible between these mentioned
lines. In particular the space between each dominant cyclic
frequency is divided by four equally spaced components each
spaced by frot.

Debris fault The randomness of the vibration signal ac-
quired for the foreign debris fault is yet again confirmed by a
nearly continuous cyclic spectral components on the α axis,
as shown in Figure 3(b). The cyclic components due to the
rotation are visible only in the frequency band above 10kHz.
Below, on the other hand, there are no distinguishable cyclic
spectral components.

Lack of lubrication fault The lack of lubrication state,
shown in Figure 3(c), is very similar to the fault free
case. The dominant cyclic frequencies are 10 × frot and
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its harmonics. The cyclic coherence for this case does not
contain any additional cyclic spectral component that might
point towards a specific fault.

Inner race fault Cyclic coherence for this fault is shown
in Figure 3(d). We can detect a new cyclic component at
204Hz. This is a clear match with the BPFI frequency.

Outer race fault Similarly, outer race fault exhibits a strong
cyclic component at 135Hz which is BPFO. This is shown
in Figure 3(e).

Interpretation using rule 2): According to the Rule 2),
the most appropriate frequency band lies with in the interval
where the SCOH at the dominant cyclic frequency α has
maximum value. Consequently, the first step would be a
selection of the dominant cyclic frequency α for each fault
and then examine the value of the SCOH on f -axis at that
fixed cyclic frequency α.
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Fig. 3. Cyclic spectral coherence (SCOH) for vibration signal

The dominant cyclic frequencies for each fault are shown
in Table III. The plots of SCOH for these selected frequen-

TABLE III
BANDPASS FILTER PARAMETERS OBTAINED BY CYCLOSTATIONARY

ANALYSIS

Fault Dominant cyclic frequency α
Lack of lubrication 10× frot

Bearing inner race fault BPFI
Bearing outer race fault BPFO

cies are shown in Figure 4. By comparing the amplitudes of
this cyclic component between lack of lubrication and fault–
free state (cf. Figure 4(a)) we can determine the frequency
band where the difference between these two cases is the
biggest is in the interval [0-1.8kHz].

For the case of bearing inner race fault he plot is shown
in Figure 4(b). The frequency interval where the SCOH has
its maximum is in the frequency band between 4.5kHz and
5.5kHz. Similar observation can be made for the bearing
outer race fault. By using the same approach as in the inner
race fault the selected frequency band is between 0 and
1200Hz (Figure 4(c)).

According to this observation we have marked the most
appropriate frequency bands for a particular fault in Figure
4. They are also listed in Table IV.

The most valuable result is the fact that the filter param-
eters obtained by the spectral kurtosis method (Table II) are
almost identical to the ones obtained by the cyclostationary
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Fig. 4. Frequency band selection based on the amplitude of SCOH at
dominant cyclic frequency α

analysis (Table IV).

V. CONCLUSIONS

Spectral analysis of the unfiltered signals is not capable of
detecting minute changes in the bearing state, like the lack
of lubrication fault. One way of avoiding these difficulties is
by filtering the original signals in specific frequency ranges
that contain the best singal-to-noise ratio.

We have shown that the selection of the best band–pass
filter parameters can be detected automaticly by using either
spectral kurtosis or cyclostationary analysis. One problem
with the cyclostationary analysis is the need to examine
an interval of cyclic frequencies in order to find the most
appropriate cyclic frequency α which is unique to the
observed fault. However, as already pointed in [2], if we

TABLE IV
BANDPASS FILTER PARAMETERS OBTAINED BY CYCLOSTATIONARY

ANALYSIS

Fault Central Frequency fc Bandwidth Bw

Lack of lubrication 900Hz 1800Hz
Bearing inner race fault 5kHz 1kHz
Bearing outer race fault 600Hz 1.2kHz

know the precise operating conditions, most importantly
constant speed and load, we can calculate the spectral cyclic
coherence only for a specific set of cyclic frequencies α and
use them to detect and isolate faults.

Unlike the cyclostationary analysis, the spectral kurtosis
is not very computationally demanding. Nevertheless both
methods can be used for automatic fault detection. Even
more the best frequency band is determined on–line and the
implementation does not have to rely on excessive user’s
participation and expertise.
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