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Abstract—A functional adaptive control for nonlinear  techniques for SISO systems cannot be simply extended to
stochastic Multi-Input Multi-Output (MIMO) systems is pre- ~ MIMO systems in general. Hence, problems of representa-
sented. A nonlinear system is modelled by a MultiLayer o, jdentification and control of MIMO systems are more
Perceptron (MLP) neural network. Parameters of the model . . .
are estimated by the extended Kalman filter (EKF). One of (?hallenglng than in casg of SISO systems. Even in case of
the key problems connected with neural network is selection linear MIMO systems with known parameters a task of con-
of its structure. In order to avoid this problem, an on-line trol design is difficult, especially due to existing coupling be-
algorithm for dynamic structure optimization of the MLP  tween individual input/output channels. The control problem
network is proposed. Controller design is based on bicriterial ;s ore complicated in case of nonlinear stochastic systems

dual approach that uses two separate criteria to introduce ith tainti bout i functi d ibing th
opposing aspects between estimation and control; caution and with uncertainties about nonlinear functions describing the

probing. The proposed approach is compared with two adaptive Systems. It is a task of the functional adaptive control for
non-dual controllers. The quality of the proposed functional MIMO systems. However, this area of functional adaptive
adaptive controller is illustrated in a numerical example. control has been addressed marginally up to now.
The first attempt to deal with the theoretical aspects of
the representation and control of nonlinear multivariable
In the last decade, functional adaptive control systerdynamical systems is presented in [7]. But an intensive
design for nonlinear systems has attracted a great deal gff-line training of a neural network is needed. In [10] a
attention [1], [2], [3], [4]. The title 'Functional adaptive comparison of neural networks and gaussian process (GP)
control’ refers to the fact that the type of model uncertaintynodels is performed. The certainty equivalence principle is
is connected with functional uncertainty, where the nonlinearsed in control design and so there is no reduction of future
functions and parameters of the system are unknown.  uncertainties about a model. Further, the GP techniques re-
Modelling of unknown nonlinear functions that describequires off-line identification. In [8], the technique of multiple
system can be approached via functional approximatorsodels is used for MIMO control design, but only system
represented for example by diverse types of neural networlggth no disturbances is considered. The functional adaptive
[5] (radial basis function (RBF) or multilayer perceptroncontrol for the multivariable discrete-time stochastic systems
(MLP)). One of the most difficult problems connected withhas not been studied yet.
neural network is selection of its structure, i.e. the number Hence, main goal of the paper is to design functional
of hidden layers and the number of neurons in them. Eitheidaptive control for non-linear stochastic MIMO systems
it is possible to choose a static structure before controll@ihere unknown functions of a system are modelled by a
is designed or to use a dynamic structure optimizatioMLP network, and combine it with a dynamic structure
algorithm. Utilization of dynamic structure allows to setalgorithm of neural network.
optimal structure of the neural network and so to decreaseThe paper is organized as follows. In Section 2 the prob-
overall computational demands of the designed controller. lam of dual stochastic adaptive control for non-linear MIMO
the above mentioned works only a static structure is usedsystems is formulated. Section 3 concentrates on MIMO
Typically, functional adaptive control should simultane-system identification by neural networks. The derivation
ously optimize control performance and reduce uncertain®yf the bicriterial dual controller is shown in Section 4.
of the system. In contrast to methods that use well knowm Section 5 the proposed approach is demonstrated in a
certainty equivalence principle, functional adaptive controhumerical example.
system generates action signal representing compromise be-
tween control and identification. In addition, it is possible Il. PROBLEM STATEMENT

to avoid time consuming off-line system identification. Typ- - 5 dynamical system to be controlled is the nonlinear time-

ically, such methods are either adaptive critic [4] or dua1lnvariant stochastic discrete-time system withinputs and
control methods [6]. n,outputs given as
It should be pointed out that the above mentioned results of

I. INTRODUCTION

functional adaptive control are limited to single-input single- yi = f(xk_1) + G(Xp_1)up_1 + e, 1)
output (SISO) systems. However, many control systems are

multivariable [7], [8], [9]. The controller design for multi- Whereu;, = [ul", ..., «{™]T are inputs of the systeng; =
input multi-output (MIMO) systems is more difficult and [y,(cl),...,y,i”)]T denotes outputs of the systelfi{(xx_1) =

very different from design for SISO systems. The desighf") (x;_1),..., f((x,_1)]T is the n-dimensional vector



of unknown nonlinear functions, further output and each netwoiK’) hasm outputs. Total number of
the networks i2n. Although some difficulties are connected

(11) (Im) (x,.
9 (.Xk—l) 9 (_X"‘l) with this technique, as design of the neural networks and
G(xk-1) = : : (@) nonlinear estimation of their parameters, this model will be
g™ (xp1) o g™ (xp) preferred further.

The model of the system is described as
is then x m matrix of unknownnonlinear functionsx;_; £ y

Vi Yi 1wy, ..., ui_,]" is the state of the sys- 1 = foxeer, Wi, e) + Glxemy, Wl eDup1,  (3)
tem andey, = [e\",...,e\™]7 is the vector of the additive

noises. It is required that the outpy}, follows the chosen where theit” output of the model is given as

reference signat, = [r\",..., )7 It is assumed that .

the following conditions are satisfied. NONRC A (ij () .

Assumption 1:Parameterg and s are known. B =100+ ;g( Ougly, for i=1,...,n (4

Assumption 2:The system has a globally uniforml s v _ _
asymptotically stable ze);o dynamics [11?and nB(/)nIinear fuﬁc- FOl xp_ wi) = ()T ol (x¢_,wl), (5
tions in the matrixG(x;_1) are bounded away from zero G (9 xq_ Wi = (eI )T g% (x¢_, wi), (6)
for all x.

Assumption 3:The white noise{e,} has Gaussian dis- wherexj_, = [x}_, , 1]” is the state vector augmented
tribution with zero mean and covariance mat& = by constant bias inputcf and c” are nf;, resp.ng;;
diag (aé”), wheres!” are known variances of théj) for dimensional vectors of the unknown parameters of the output
i=1,.../n. layer of the networkf (), resp.g(i/), w/* andw?' are vectors

Assumption 4:The relative order of the system is theof the unknown parameters of the hidden layer of tHe
same for all outputs. network with length(n+p+1)nf;, resp.(n+p+1)ng;;.

The goal of the control is to design the functional adaptivécalar functionsp’:(-) and ¢% () are sigmoidal activation
dual controller for the system (1) in such a way that théunctions of the neurons in the hidden layers.
output of the systeny; will follow appropriate reference  Equations (3)—(6) describe the model of the system (1).
signalr; chosen by designer, in other words to derive th&efore an application of an estimation method for the
control law by minimization of properly chosen criterion. parameters estimation, a suitable estimation model of the
Design of the functional adaptive control will be madeidentified system have to be defined. First, all parameters of
following way. In terms of solution design is necessary tdhe model (3) will be included in one parameter vector
deal with suitable representation of the MIMO system (1) by

neural networks and controller design. The controller desig®;, = |(c/")7, (wi")T, (cI"™)T, ..., (cI™)T, (Wi, ...,
will be based on the bicriterial dual control approach [6]. T

Attention will be focused on the MLP networks, because they ()T, (wiT (e)T, .. (cdmm)T, (wZ”)T} ,
can approximate nonlinear function at the same accuracy as (7

RBF networks with significantly less number of neurons for

real time applications. One issue of system identificatiowhere length of the vecta®,, is denoted,,.

by MLP networks is estimation of network parameters. The following two subsections concentrate on searching
In this case, the parameter estimation represents nonlineae optimal structure and the parameter values of the MLP
optimization problem. It is known that parameter estimatiometworks representing parameters of the model (3)—(6).
methods are based either on minimization of prediction error

[12] or on nonlinear filtering methods [13], [1], [14]. Next A parameter estimation

key problems joined with neural networks is selection of the

neural network structure. In order to avoid this problem, an The parameters of the networks are considered as t-inva-
on-line dynamic structure algorithm of the MLP network isfiant in time

proposed. Ori1 = 0. (8)

Ill. M ODEL OF THEMIMO SYSTEM BY NEURAL

NETWORKS Further, it is assumed that the system (1) can be approxi-

mated with sufficient precision by a chosen neural network.

Firstly, a suitable model of the system (1) have to b&nen it is possible to obtain the measurement equation from
specified. MIMO systems are mostly characterized by highyy py rewriting it as

dimension of the system state. Hence, MLP network is
suitable type of neural network for modelling the MIMO Vi = hp(®4, x¢_ |, up_1) +ex, (9)
system [7].
An approximation of the system (1) can be made in varioughere
ways [7]. Chosen alternative uses two neural netwgiks
and §(*) wherei = 1,...,n. Each networkf(®) has single  hy(-) = f(c],x¢_,, wi) + G(c?,x¢_,, w))u_1, (10)
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B. Dynamic structure optimization

wi = [(w)T,... (wi")TT, The proposed approach is based on pruning insignificant
g _ gI\T gn\T1T connections in the network and it is a special case of the
wi=[(wl')", ..., (wi{)" ], \ ! _
7 AT FoTyT algorithm proposed in [16], where more details about the
cp = [(c;!) ", ()] algorithm derivation can be found. Pruning methods are
cf =[(cI)T, e ()T (efm)T]T. generally based on sufficiently large networks initialization.

(11) Then the insignificant connections or neurons are pruned
ffrom the networks by setting the corresponding parameter
o) i .

value to zero. The pruning algorithm should be started after
tabilization of the mean square error of the predicted output
r = ||yx —¥&|| which indicates that the network parameters
ave been set. This is measured by the following difference

1 k 11@71

=0 =0

Equations (8) and (9) define the estimation model
the system (1). Unfortunately, dependence yaf on the
parameters of the neural network is nonlinear in (3)—(6).
Therefore, it is advisable to exploit nonlinear estimatio
method for finding the unknown parameters. There al
many optimization methods developed for training the MLP
networks [12], [1]. The methods based on non-linear filtering Ap =
belong among the most promising and enduring of enhanced
training methods because they are practical, computationally the difference A, is less than or equal to a chosen
moderate and they represent an effective alternative to offrésholdA, then the pruning process can be started.
timization methods as quasi-Newton, Levenberg-Marquardt, 1he significancy of the-th parameter of the network can
or conjugate gradient techniques [15]. The well-known exP€ derived as

02
tended Kalman filter (EKF) represents probably the most E; ~ 0—“‘, (29)
attractive approach from non-linear filtering due to the above Py
mentioned characteristic. wheref, and P, is the s-th term of the vecto(;)kH, resp.
The pdfp(©,|T¥) is given as the s-th diagonal term of the matri® ;.
. R As the final step, the parameters that should be pruned in
P(Ok|T) = N{@k : Gk’Pk} ; (12)  the stepk must be chosen. For the sake of simplicity index

k + 1 will be omittedAin (;)kﬂ. It is suitable to sort the
elements of the vectd® according to their significancy as

(;) = [éﬁlﬂéﬁ27"'7éﬂ'0n]g (20)

whered,, is parameter with the lowest significand;.
A criterion for pruning connections from the network is
set as

where

Or =051+ Ky [yr — V1], (13)
P, =Py —K;V,P;_q, (14)

—_—1
K, = Pk_l[vk]T [kak_1[Vk]T + :.L (15)
. . . . 1 N ~ A~ A
whereV, represents the first derivative of the functibg(-) (G[MN]76)TP71(6[MN],9)7 aN=1,...,0n

with respect to paramete®, and has the following form Tﬁk +1 1)
Vg) Where(;)[lmN] = [O, A ,O7 07‘rN+17 eﬂN+2, . ,aﬂ-gn}. If the
O value T will be less than the chosen threshdli, then the
, connections will be pruned. The strategy is based on finding
= V;(f) , such sequence of the parameters that their pruning causes
0=06, - only a minor error in the model. For that reason, a sequential
O ' computation of the criterion (21) from the parameter with the
Vé”)_ lowest significancy to the most significant is performed until
(16) the conditionT < T is satisfied.
Now, it is possible to obtain both the estimate and the
covariance matrix of the parameters of the system at every
vfj) = [V?’ VZ”“;(QP o ngui@l . (17) step of estimation algorithm which are necessary for compu-
tation of a control actionn;,. Due to chosen neural network

Non-diagonal parts in (16) are equal to zero because of thgycture, the covariance matrR;,; can by written in a
independency of corresponding derivatives on elements gfpck diagonal form as

(7). This fact results from the equation of the model (3)—(6) (1)

and definition of the vector of the unknown paramet®s P

in (7). N 0
Thus, all information necessary for the control action can L)

be collected on-line at every stédpand the neural control Ppy1= P . (22)

scheme with static structure of the neural network can be '

accomplished. Now, the control scheme will be extended O

about dynamic structure adaptation process. ng;’l‘)_

where




where where

i fi 13 iGim GG _ G G G T ; ;
plil Plor L Pl vi% = Qi VYL P (VY )T is m x m matrix
gi1 fi gi1gi1 gi1gim GF G GF F \T ; ;
plid)_ Pl PEET o P 03 vii1 = Qe Vi Py (Vi) is vector with lengthm.
im Ji im3i im Jim i G GF
pymfi pgmen L pYing MatricesP}; , andP;’(; can be formed from the elements

is an individual sub-matrix having dimensions given byOf the matrix P, described by (22) and have the form

ve R G F H f
numbers of parameters relevant to the neural netwgfks given by (30) andVi,,, resp.Vy, can be obtained from

309, (16) as
T
IV. BICRITERIAL DUAL CONTROL DESIGN VkF+1 = |:V£1+17 cee Vﬁi‘l} )
In this section functional adaptive control for the system v, oo Vi O
(1) will be designed using the idea of bicriterial dual control

(BDC). It can be mentioned that basic idea of bicriterialV,f."H =

approach is based on subsequent minimization of two critera. O
These criteria represent two opposite goals of the dual vim o vy
control: identification and control. (32)

The first criterion evaluating the control quality is de-jt can pe noted that (28) respects uncertainties in knowledge
scribed as of the unknown functions and it is equal to cautious control
Ji = E{(Yis1 — Ths1)" Qra1(Yre1 — Trgr)+ as one of integral component of dual control.
ufskﬂuk)\lk}, The second component of control law should evaluate

) - ] ] estimation quality and it is given by criterion
where E{-|-} is conditional expectation operatoQ, is

(24)

n x m positive semidefinite matrixS,, is m x m posi- J¢ = —E{(yrt1 — r+1) Wes1(¥rt1 — Frs1) e},
tive definite matrix andl, describes available information (32)
segment until timek. where Wy, is n x n positive semidefinite matrix. By

~ Remark 4.1:The arguments of nonlinear functiofisG, ~ substituting (1) and (3) in (32), the following relation can
f and G will be omitted in the following derivation for be obtained

abbreviation of notation. Jit =—E{(f+Guy, + e,) " W11 (F+Guy, + e;)—
By substituting (1) into (24) the criteriofi; can be rewritten (f + Guy + e)T Wi (F + Guy)
N _
(

as R
J/g :E{(f + GUk +er — I‘k+1)TQk+1 X f+ Guk)TWk+1(f + Guk + ek)+
25 i Ga)T Py
(f + Guy +ep — rp1) + uj Spprue[Ii ), (29) (f + Gu)" Wiy (f + Guy) L }.
where the functiond, G should be regarded as randomAfter_ multiplying and °_mi_t“”9 th? terms independentuof
variables. Subsequent multiply and partially application of Stitable form for optimization is
mean operator over information segmdptone can obtain J¢ =—E{uf G"W 1 f+ul GTW; 1 Guy + T Wiy x

(33)

J¢ =B{f"Qp41Gluy + uf E{GTQp1f}+ Guy, — "Wy x Gu — uf GTWy i1 Guy—
ul E{GTQy41Glu; — vl F{Qs11G}u,— (26) W GTW 1 f—fTW 1 Gup—uf GTW -
ufE{GTQ;H_l}er + ukT.Sk_Huk +c, ufGTWkH Guy, + f'TWkHéruk—i—
wherec represents all terms of; that are independent of uf GTWi 1 f +ul GTWi Guy L}
ui. They can not influence value of the criterion and need (34)

not be considered further.

o . . . The bicriterial controluy, is then given as
Now, it is possible to determine control actiaxf as

extreme of criterionJ¢ u = argn?zin Jg. (35)
ui €82k
oJ; _
5 b —B{GTQy1f} +E{GT Q) 1Gluy— 27 Minimization of J;! is performed over the regidn, which is
Uk T (27) specified byuj, and its surrounding symmetrically distributed
E{G" Qi+1)rp41+Sk 410, =0. around the cautious control &%, = [u§ — &x,uf + &),
In the remaining terms in (27) mean operator can be appliasheres;, = [5",...,5™]T. The choice of the parameter

by using well known relation?{a” Qx11a} = a"Qr1a+  §, stems from reasoning that it is necessary to enrich the
E{[a — a]"Qg41[a — a]}. Then, the control actiom{ can cautious control with probing proportional to uncertainty of
be written as the unknown function$, G in the controlled system (1). A
ul =[Sy + GTQu1G + ,,gfl]fl > (28) common choice [6] fod,, is
(GTQuririesr — GTQuaf — v, 8 =ntr(Prr1), 0P >0 Vi (36)



'Piﬁlgll Pil-;lglm, O -
Piflu Pifllm Pziit)u Pzi‘.nl,glm,
Pyl = : : . Py, = (30)
Pi:y;!{m Pivl!{mm O Pzil]ym,l Piillgmm
I P!]iz;?in,gml Pzivlnflmwn ]
wheren is m dimensional vector, that provides the amplitudewith zero means and variancesél))2 = (aéz))2 = 0.005.
of the probing signal and the matrB;,.; describes a degree Reference signals are chosen as
of uncertainty of the parameter estimate conditionedlpy Ik ok
. . . . . (1) . ™ . ™
and can be obtained using a nonlinear estimation method. r, =0.55sin —— + 0.55 sin —,
. . 30 20 (41)
Relation (35) can be rearanged and written as

u; = uf, + 8 sign [J2(uf, — 8) — J2(uf, + &k)] -

(37)

2k 2
r? =075 sin 5 +0.75sin o

Initial values of the inputs and the outputs are zero. As it

Now, evaluation of the term in the square brackets remaingas mentioned in Section 2, each of the nonlinear functions
to be performed. This term can be obtained by substituting'”, ¢~ for i = 1,...,n is modelled by individual neural
(u§ +465), resp.(ug — &) for uy in (34). Using elementary network. Model of the system is composed of four neural

adjustments, the following form can be obtained

fE(af — 8y) — Ji(uf +68y) = 407 E{(G — G)T W11 x

(f— ) + (G - G) "Wy 11 (G — G)uf |Ii }.

(38)

networks. Each of the neural networks is perceptron neural
network with one hidden layer containing 20 neurons for
each functionf(-) and 15 neurons for each functigti). The
initial parameters are generated from uniform distribution
on the interval< —0.1;0.1 > and covariance matrix is
P, = 10I. Finally, parameters of the BDC are chosen as

Now, it is possible to reuse the introduced relations (29%ollows: Wj1; = Qi1 = I, Sip1 = 0.01I andn” =
By application of the mean operator and using assumptign.00002 0.00004]. Parameters of the pruning algorithm are

Qr+1 = Wy, the equation (38) has form

Te(ug —8) — Je(uf +8) = 48T WEE + g up). (39)

Final equation of functional adaptive controller for MIMO
system based on bicriterial approach can be obtained
combination of (27), (37) and (39) and it possible to write

uy = uf, + disign [JkT.(Vg’fl + ngluz)] .

V. NUMERICAL EXAMPLE

The discrete-time nonlinear stochastic system with two

(40)

chosen ag\o = 0.005 and Ty = 0.00001.

Influence of dynamic structure optimization on the control
quality and time demands is shown in Table 1. The BDC with
dynamic structure optimization is compared with BDC with-
ogt utilization of the dynamic structure algorithm. Criterion
or comparison is set as the mean of sums of square errors
of the reference;, and the system outpgt, over 100 trials
and 300 steps per trial:

100 300 )

7",(;]))2

(42)

inputs and two outputs described by the following equationdtilization of the dynamic structure algorithm brings com-

is considered

+

1 1 2
y(l) . 07y]£_)1y1522 O.lué,_)l
kT 1 2 1 2
1+ (yl(s—)l)2 + (yl(e—)2)2 I+ 3(912-—)2)2 + (yl(e—)l)2
+ul” +0.25u, +0.5u?, + el
2) .. (2
@ O.SyIijl sin ylng

k. 2 1
1+ (12 )2 + ()

+ul?, (0.1u§f}2 - 1.5) +e?),

— 4+ 0.5u 2, + 0.0, +

parable control quality and significantly lower computational
demands in comparison with the static structure. The number
of the parameters decreases by 80 % and computational
demands decrease by 20 % in the case of dynamic structure
optimization. It should be noted that the size of reduction
grows with system state dimension and control horizon in
general.

Results of the simulation are illustrated in Figures 1 and 2.
In Figure 1 the tracking of the chosen reference signals for
both outputs of the systelgf) andy,(f) is shown. It is clear
that quick adaptation of the parameters of the model occurs

wherexy_1 = [yx—1, Yr—2, Ur—2] is the state of the system, up to the 100th step. Very good control quality is achieved
{eM}, {e®} are mutually independent Gaussian noiseafter this adaptation period. The goal of the control, i.e. the



TABLE |
INFLUENCE OF DYNAMIC STRUCTURE ON QUALITY OF THE CONTROL
SYSTEM AND TIME DEMANDS.

used. The proposed dual adaptive controller with dynamic
structure has lower computational demands and comparable
control quality in comparison with controller that utilizes

V. cov(V) nf time[s] static structure of the neural network.
BDC stat 278 158 590  57.2
BDC dynam 265 182 112 455 ACKNOWLEDGEMENT
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Fig. 2. Progress of the neural network parameters in time.



