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Abstract— This paper aims to compare the performance of
various techniques for the stabilization of the error dynamics of
the Acrobot’s walking like reference trajectory. Both the walk-
ing reference planning and the tracking feedback design are
based on the Acrobot’s model partial exact feedback lineariza-
tion of order 3. Namely, such an exact system transformation
leads to an almost linear system where error dynamics along
trajectory to be tracked is a 4 dimensional linear time varying
system having 3 time varying entries only, the remaining entries
are either zero or equal to one.

I. INTRODUCTION

Underactuated mechanical systems are those having less
actuators than degrees of freedom. Efficient control of un-
deractuated mechanical systems constitutes one of the most
challenging problems of recent decades, see [17], [7] and
references therein. Walking like mechanical chain systems
have typically one non-actuated joint which is at the support
pivot point of the walking like mechanism. Reliable and
economic walking is the typical example of the related
studies among both control and robotic community. The
corresponding problems are basically related with a) walking
like trajectory planning, and b) design of the feedback
ensuring exponential tracking of such a trajectory. One
of the simplest underactuated mechanical systems is the
Acrobot, depicted on Figure 1, sometimes called also as
the biped. Despite being a seemingly simple system, the
Acrobot comprises many important features of underactuated
walking robots having degree of underactuation equal to one.
Recently, numerous papers have addressed the stabilization
of its inverted position extending its domain of attraction [3],
[14],[8]1,[51, [18],[16], or even stable walking-like movement
[6], [2], [1]. Despite its simplicity, the Acrobot comprises
all typical problems related to control of the underactuated
walking like mechanical systems. As a consequence, the
effective control of the acrobot is an important step on the
route to underactuated walking, see [6], [2], [1], [5], [18] for
more detailed arguments.

This paper aims to further extend the results obtained
in [6], [2], [1] regarding exponential tracking of the pre-
selected walking like target trajectory. This design is based
on the partial exact feedback linearization of the order 3.
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Namely, such an exact system transformation leads to an
almost linear system where error dynamics along trajectory
to be tracked is a 4 dimensional linear time varying system
where the corresponding right hand side matrix has 3 time
varying entries only, the remaining entries are either zero or
equal to one.

The rest of the paper is organized as follows. The next
section briefly presents the model of the Acrobot together
with the main theoretical pre-requisites necessary for further
numerical analysis. Section 3 describes the main result of
this paper. Simulations of Acrobot walking are presented in
Section 4. The final section draws briefly some conclusions
and discusses some open future research outlooks toward
efficient underactuated walking.

II. THE MODEL OF THE ACROBOT

The acrobot depicted on Figure 1 is a special case of n-
link chain with n — 1 actuators attached by one of its ends

Fig. 1.

Acrobot.

to a pivot point through an unactuated rotary joint. Such a
system can be modelled by usual Lagrangian approach [9].
The corresponding Lagrangian is as follows

1
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where g denotes a n-dimensional configuration vector on the
configuration manifold @) and D(q) is the inertia matrix, K
is the kinetic energy and V is the potential energy of the



system. The resulting Euler-Lagrange equation is
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where wu stands for vector of external controlled forces.
The system (2) is the so-called underactuated mechanical
system having the degree of the underactuation equal to one,
[15]. Moreover, the underactuated angle is at the pivot point.
Equation (2) leads to a dynamic equation in the form

D(q)i+C(q,9)¢+G(q) =u 3)

where D(q) is the inertia matrix, C'(¢,q) contains Coriolis
and centrifugal terms, G(q) contains gravity terms and u
stands for vector of external forces.

For the Acrobot, these computations lead to a second-
order nonholonomic constraint and a kinetic symmetry, i.e.
the inertia matrix depends only on the second variable ¢y
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where the 2-dimensional configuration vector (g1, ¢q2) con-
sists of angles defined on Figure 1 and

01 = (m1 +m2)l3 + I, O = mal + I,
03 = malily, 04 = (M1 +ma)l1, 05 = mals.

)

The partial exact feedback linearization method is based
on a system transformation into a new system of coordinates
that displays linear dependence between some auxiliary
output and new (virtual) input [13]. From the theoretical
point of view, the n-degrees of freedom mechanical sys-
tem dynamics is described by 2n-dimensional state space.
Static state feedback linearization generated by the suitable
output function having the relative degree r yields a linear
subsystem of dimension r. In other words, the maximal
feedback linearization problem consists in finding a function
with maximal relative degree. In [12] it was shown that if
the generalized momentum conjugate to the cyclic variable is
not conserved (as it is the case of Acrobot) then there exists
a set of outputs that defines a one-dimensional exponentially
stable zero dynamics. That means that it is possible to find
a function (g, ¢) with relative degree 3 that transforms the
original system 4 dimensional system (33) by a local coor-
dinate transformation z = T'(¢, ¢) into the new input/output
linear system having 3 dimensional state plus unobservable
nonlinear dynamics of dimension 1.

In the case of the Acrobot there are two independent
functions with relative degree 3 transforming the system into

the desired partial linearized form with one dimensional zero

dynamics,! namely
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The zero dynamics is used to investigate the internal stability
when the corresponding output is forced to zero. For the
most simple cases § = Cp or § = Co the resulting
zero dynamics is only critically stable. However, considering
the output function § = Cip(q) + Ca0(q,q) one gets
the following zero dynamics p + C1[Cadii(q2)] " 'p = 0
which is asymptotically stable whenever C;/C5 is positive,
d11(g2) is the corresponding part of the inertia matrix D in
(33). Unfortunately, the corresponding transformations have
a complex set of singularities, unless C'; is very small, which
is not suitable for practical purposes.

In [6] it was shown that using the set of functions with
maximal relative degree, the following transformation
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can be defined. Notice, that by (8,9) and some straightfor-
ward but laborious computations the following relation holds

(1)

where di1(g2) = (01 + 02 + 2605 cos g2) is the corresponding
element of the inertia matrix D in (33). Applying (10), (11)
to (33) we obtain the Acrobot’s dynamics in partial exact
linearized form
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with the new coordinates £ and the input w being well
defined wherever a(q,q)~! # 0.

Assume that an open loop control w” (t), generating a suit-
able reference trajectory, is given in partial exact linearized
coordinates (12). In other words, our task is to track the
following reference system

G =di ()&, &=¢, &=¢, &=u"

Denoting e := & — ¢" and subtracting (13) from (12) one
obtains

(13)

é1 = diy ($2(61,&))& — dit (02(&7, €5))E5,

éy=e3, €3=e€y4, &4 =w—w .

1 . _ d oL _ oL s _9V(g)
Actually, by (2) 0 = di v = ba. and .therefore by (o= ~oa
as D(q) = D(q2) by (4). In other words, & has relative degree 2, i.e. o
has the relative degree 3. Moreover, by the straightforward differentiation
it holds p = d11(g2) 1o, i.e. p has relative degree 2, i.e. p should have

relative degree 3 as well.



Straightforward computations based on the Taylor expan-
sions give
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where 11 (t), po(t), us(t) are known smooth time functions:
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In [6] it was shown that
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Let us repeat the main results in [2] and [1]

A. LMI based stabilization of the error dynamics

In [2] it was shown that for reference trajectory tracking
one has to solve the following stabilization problem. Con-
sider the open-loop continuous time-varying linear system

é = A(t)e + Bu, (22)
where
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The tracking problem consists in finding the state-feedback
controller

u = K@, K= ( Kl KQ K3 K4 )7 (23)
producing the following closed-loop system
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where bounds for u(t) = (p1(t), u2(t), us(t)) are given by
(20)-(21).

Despite entries of ;(t) are known functions, the appealing
idea is to treat them as unknown disturbances satisfying
the above mentioned given constraints. If constraints are
tight enough, one can think about solving quadratic stability
conditions and design a unique feedback stabilizing such an
“uncertain” system. Obviously, such a feedback would be at
the same time solving our tracking problem.

Consider the well-known Lyapunov inequality to be solved
for all values of () by finding a suitable symmetric positive
definite matrix .S and a vector K:

(A(p)+BK)" S+ S (A(p)+ BK) 20,
S=58T0.

(25)
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Such a problem is in fact bilinear with respect to the

unknowns. Denoting
Q=5S1Y=K5" (27)

we derive the following LMI condition for quadratically
stabilizing feedback design:

QAT (W) +A(w)Q+YTBT + BY =<0.
Notice that the pair (A(u), B) is controllable if and only if
(29)

(28)

paps + p2 # 0.

Obviously, if the set of possible values of . contains, or stays
close to, the singular set given by (29), LMI (28) becomes
infeasible, or almost infeasible.

B. Analytical design of the exponential tracking

In [1] it was shown that using the precise knowledge of
the function us and knowledge of the ranges of values of
H1,2,3(t), 13(t) then the system (13) could be transformed
into following linear time varying system

é1 = pa(t)ez +pi(t)er + ps(t)es
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where time functions p1 2 3(t) are such that V¢ > 0 it holds:
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0 < My < po(t) + pa(t)ps(t) — pis(t) < M3,

for some suitable real constants M, My, M?. Assume that
K> 3.4 are such that the polynomial A\® + K4\ + K3\ + Ko
is Hurwitz and, moreover,

3D

K
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In [1] there is the proof that exists a sufficiently large © > 0

such that the system (30) is globally exponentially stable.

III. IMPACT MODEL

An impact occurs when the swing leg touches the walking
surface. The impact between the swing leg and the ground
is modeled as a contact between two rigid bodies. There are
many different ways how impact can be modeled.

For development of impact rules, the dynamic model (33)
has to be enlarged by reaction force effects. By adding
Cartesian coordinates (p”;,pY;) to the hip, the following
extended model is obtained

De(Qe)de + Ce(qe7 q.e)q.e + Ge(qe> = Beu + 6Fea:t (33)



where ¢. = (q1, g2, th,p”H) and 0 F,,; represents the vector
of external forces acting on the robot at the contact point.

If there is no slip or rebound, the positions q do not change
during the impact g™ = ¢~. Suppose the stance leg tip is in
contact with the ground and not slipping, then the extended
coordinates ¢. and their velocities ¢. are related to ¢ and ¢,
by

g =T(q), ¢ = ag((f) (q) (34)

whereY = (¢, p"y, p’;)’. The impact model of [10] is used
under the following assumptions that imply that the total
angular momentum is conserved:

H1 The contact of the swing leg with the ground results in
no rebound and no slipping of the swing leg.

H2 At the moment of impact, the stance leg lifts from the
ground without interaction.

H3 The impact is instantaneous.

H4 The external forces during the impact can be represented
by impulses.

H5 The impulsive forces may result in an instantaneous
change in the velocities, but there is no instantaneous
change in the configuration.

H6 The actuators cannot generate impulses and, hence, can
be ignored during impact.

Following an identical development as in [11], the expres-
sion relating the velocity of the robot just before to just after
the impact may be written as

o+
de gt
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where
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and E(q.) = (p"y,p'y) stands for the fixed coordinates
of the robot in the Cartesian frame and (F, FJV) are the
integrals of the tangential and normal components of the
impulsive forces.

Solving (35) yields
Ff | =1(q;) { Dela)ie } . 6D

By partitioning II(g. ) the map from ¢, to ¢ is obtained
as

45 = M1 (gz ) De(ge )de
Ff _ e
N = Hll(qe )De(qe )qe

2

The combination of (34) with (37) and (38) results in an
expression for the velocities of the robot just after impact
and the integral of the impulsive forces. At impact, it is
assumed that the swing leg becomes the new stance leg and
the coordinates must be relabeled.

(38)

IV. SIMULATIONS

To demostrate the Impact we use the same walking like
trajectory2 as in [6], [2], [1]. In means that the first parts of
Fig. 2 and Fig. 3 are same as in [2]. The same state-feedback
matrix K = 10%(—1.9087 — 1.2097 — 0.1781 — 0.0090) is
used and saturation limit in the range +10 Nm was used too.
The first parts of Fig. 4 and Fig. 5 is same as in [1]. The
same gains (K, Ko, K3, K4) = —(1.5 X 6,6,12,8) and the
same “amplifying” parameter © = 20 was used. The initial
positions errors were zero while velocities errors were about
20%.

When the swing led touches the ground occurs impact. At
impact the coordinates must be relabeled because the swing
led becomes the new stance leg.

The second part of each Figure is produced the same way
as the first part. Only the initial conditions are different. In
both cases the error in initial conditions is less than at the
beginning of the first step.
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Fig. 2. Angular positions g1, g2 with saturation and references (dotted

line). LMI based design.

V. CONCLUSIONS AND FUTURE WORKS

Using the impact we extend results obtained LMI based
design or analytical based design. In both cases the error in
initial conditions is less than at the beginning of the first
step. Ongoing research is to propose the reference trajectory
so that the initial conditions of new step after impact are
equal to initial conditions of the reference step.

2This trajectory is the so-called pseudo-passive trajectory. Namely, pseu-
dopassive trajectory is the one for which w” = 0, i.e. there is no input action
in the exact feedback linearized coordinates. The word “pseudo” expresses
the fact that real torque is not zero, but 72 = —wal(q, ¢)/6(q, ¢), due to
the linearizing relation between real torque 72 and the virtual input w in
the partial exact linearized form.
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Fig. 3. Angular velocities g1, g2 with saturation and references (dotted

line). LMI based design.
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Angular velocities g1, g2 with saturation and references (dotted

line). Analytical based design.
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