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Abstract

The Ultimatum Game is a key exemplar that shows how human play often deviates
from “rational” strategies suggested by game-theoretic analysis. One explanation
is that humans cannot put aside the assumption of being in a multi-player multi-
round environment that they are accustomed to in the real world. We introduce
the Social Ultimatum Game, a multi-player multi-round version of the classical
Ultimatum Game. We develop mathematical models of human play that include
“irrational” concepts such as fairness and adaptation to societal expectations. We
also investigate the stability of maintaining a society of “fair” agents under these
conditions. This work is a first step towards building a general theory of imperfect,
but reasonable, human-like strategic play in repeated multi-agent games.

1 Introduction

The Ultimatum Game has been studied extensively over the last three decades and is a prominent
example of how human behavior deviates from game-theoretic predictions that use the “rational
actor” model. The classical game involves two players who are given the opportunity to split $10.
One player proposes a potential split, and the other can accept, in which case the players receive
the amounts in the proposal, or reject, in which case, both players receive nothing. In the subgame
perfect Nash equilibrium, the first player offers $1 to the other player and keeps $9, and the second
player accepts the $1 offer, because $1 is better than nothing. However, when experiments are
conducted with human subjects, this behavior is rarely observed.

One seemingly intuitive explanation that has not received much treatment in the literature is that
humans play similar games in their real lives, and may not view the experimenter’s game indepen-
dently of these more familiar situations. When faced with an isolated Ultimatum Game in the lab,
humans thus act in the way that is habitual to them given a similar real-life game. One key feature of
these contextual experiences is that humans repeatedly interact over time with multiple other play-
ers. The strategy space in such repeated, multi-player games in much more complex, and introduces
many new equilibrium strategies. The “irrational” behavior observed in isolated Ultimatum Game
experiments no longer seems so irrational when viewed through this lens.

This work is the first step towards building a general theory of imperfect, but reasonable, strategic
play in repeated, multi-agent games. By building a model that describes human play in a well-
studied example of this type of game, we can study the behavior of systems resembling multi-
agent human decision-making. Just as humans may reduce computational complexity by mapping
game instances to familiar game “templates”, we may discover that such a strategy, as well as other
strategies that are imperfect yet reasonable, provide benefits to engineered systems of agents.

Background. Economists and sociologists have proposed many variants and contexts of the Ulti-
matum Game that seek to address the divergence between the “rational” Nash equilibrium strategy
and observed human behavior, for example, examining the game when played in different cultures,
with members of different communities, where individuals are replaced by groups, where the play-
ers are autistic, and when one of the players is a computer. Interestingly, isolated non-industrialized
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cultures, people who have studied economics, groups, autists, and playing with a computer all tend
to lead to less cooperative behavior [6, 4, 3, 1, 2]. Neuro-economists have suggested that the study
of strategic interactions must be done with consideration given to the neurological constraints im-
posed by human biology [8, 7]. Evolutionary game theorists have examined replicator dynamics and
other adaptive dynamics (trial and error, imitation, inheritance), which all tend to converge to the
self-interested Nash equilibrium. By adding the ability for the proposer to retrieve information about
the recipient’s past actions, Nowak et al. show that these dynamics can converge to fair play [5].
However, in this work, proposers are paired with recipients randomly and receive this information
without cost, both somewhat unrealistic assumptions. In this paper, we treat the selection of a po-
tential recipient as part of the proposer’s strategy, and reputation (or more generally, beliefs about
other players’ strategies) is uncovered naturally through the interactions allowed by the game. Thus,
knowledge is gained only through an exploration process, mirroring what is often a real-world truth.

2 The Social Ultimatum Game

The Ultimatum Game, is a two-player game where a player, P1 proposes a split of an endowment
e ∈ N to another player P2 where P2 would receive q ∈ {0, δ, 2δ, . . . , e−δ, e} for some value δ ∈ N.
If P2 accepts the offer, they receive q and P1 receives e − q. If P2 rejects, neither player receives
anything. The subgame-perfect Nash equilibrium states that P1 offer q = δ, and P2 accept. This is
because a “rational” P2 should accept any offer of q > 0, and P1 knows this. Yet, humans make
offers that exceed δ, even making “fair” offers of e/2, and reject offers greater than the minimum.

To represent the characteristics that people operate in societies of multiple agents and repeated inter-
actions, we introduce the Social Ultimatum Game. There areN players, denoted {P1, P2, . . . , PN},
playing K rounds, where N ≥ 3. The requirement of having at least three players in necessary to
give each player a choice of whom to interact with.

In each round k, every player Pm chooses a single potential partner Pn and makes an offer qk
m,n.

Each player Pn then considers the offers they have received and makes a decision dk
m,n ∈ {0, 1}

with respect to each offer qk
m,n to either accept (1) or reject (0) it. If the offer is accepted by Pn,

Pm receives e − qk
m,n and Pn receives qk

m,n, where e is the endowment to be shared. If an offer is
rejected by Pn, then both players receive 0 for that particular offer in round k. Thus, Pm’s reward in
round k is the sum of the offers they accept from other players (if any are made to them) and their
portion of the proposal they make to another player, if accepted:

rk
m = (e− qk

m,n)dk
m,n +

∑
j=1...N,j 6=m

qk
j,md

k
j,m (1)

The total rewards for Pm over the game is the sum of per-round winnings, rm =
∑K

k=1 r
k
m.

3 Adaptive Agents Model

In order to create mathematical models of human play for the Social Ultimatum Game that can yield
results that match observed phenomena, we need to incorporate some axioms of human behavior
that may be considered “irrational”. The desiderata include assumptions that:

• People start with some notion of a fair offer

• People will adapt these notions over time at various rates based upon their interactions

• People have models of other agents

• People will choose the best option while occasionally exploring for better deals

While these rules certainly do not include all human characteristics, in this paper, we investigate the
behaviors that can emerge from a mathematical model based solely on these axioms.
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3.1 Characterizing the Players

Each player Pm is characterized by three parameters:

• αk
m : Player m’s acceptance threshold at time k

• βm : Player m’s reactivity
• γm : Player m’s exploration likelihood

The value of αk
m ∈ [0, e] is Pm’s notion of what constitutes a “fair” offer at time k and is used

to determine whether an offer to Pm, i.e., qk
n,m, is accepted or rejected. The value of βm ∈ [0, 1]

determines how quickly the player will adapt to information during the game, where zero indicates
a player who will not change anything from their initial beliefs and one indicates a player who will
solely use the last data point. The value of γm ∈ [0, 1] indicates how much a player will deviate
from their “best” play in order to discover new opportunities where zero indicates a player who
never deviates and one indicates a player who always does. Each player Pm keeps a model of other
players in order to determine which player to make an offer to, and how much that offer should be.
The model is composed of the following values:

• ak
m,n : Pm’s estimate of Pn’s acceptance threshold

• āk
m,n : Upper bound on ak

m,n

• ak
m,n : Lower bound on ak

m,n

Thus, Pm has a collection of models for all other players {[ak
m,na

k
m,nā

k
m,n]}n for each round k. The

value am,n is the Pm’s estimate about the value of Pn’s acceptance threshold, while ak
m,n and āk

m,n
represent the interval of uncertainty over which the estimate could exist.

3.2 Adaptation Rules

During the course of the game, each player will engage in a variety of actions and updates to their
models of agents. Below, we present our model of how our adaptive agents address those actions
and model updates. For simplicity, we will assume that δ = 1.

Making Offers: In each round k, Pm may choose to make the best known offer, denoted q̃k
m,

or explore to find someone that may accept a lower offer. If there are no gains to be made from
exploring, i.e., the best offer is the minimum offer (q̃k

m = δ = 1), a player will not explore. However,
if there are gains to be made from exploring, with probability γm, Pm chooses a target Pn at random
and offers them qk

m,n = q̃k
m − 1. With probability 1− γm, Pm will choose to exploit. We introduce

two approaches by which Pm can choose their target. In both cases, the target is chosen from the
players who have the lowest value for offers they would accept, and the offer is that value:

qk
m,n = dak

m,n − εe where n ∈ arg min
ñ 6=m
dak

m,ñe (2)

where 0 < ε < δ is some constant threshold. The previous equation characterizes an equivalence
class of players from which Pm can choose a target agent. The ε parameter is used to counter
boundary effects in the threshold update, discussed below. The difference in the approaches are as
follows.

• The target agent from the equivalence class is chosen using proportional reciprocity, by
assigning likelihoods to each agent with respect offers made in some history window.

• The target agent is chosen uniformly over all agents in the equivalence class.

Accepting Offers: For each offer qk
m,n, the receiving player Pn has to make a decision dk

m,n ∈
{0, 1} to accept or reject it. The acceptance rule checks if the offer exceeds their threshold:

If qk
m,n ≥ dαk

m − εe, then dk
m,n = 1, else dk

m,n = 0 (3)

Updating Acceptance Threshold: The acceptance threshold is a characterization of what the agent
considers a “fair” offer. Once an agent is embedded within a community of players, the agent may
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change what they consider a “fair” offer based on what type of offers they are receiving. We model
this adaption using a convex combination of the current threshold and the received offers. The rate
of adaptation is determined by the player’s adaptivity parameter denoted βm. Let the set of received
offers be defined as: Rk

m = {qk
i,m : i 6= m, qk

i,m > 0}. If |Rk
m| ≥ 1, then αk+1

m =

(1− βm)|R
k
m|αk

m +
(1− ((1− βm)|R

k
m|)

|Rk
m|

∑
i

qk
i,m (4)

If |Rk
m| = 0, then αk+1

m = αk
m. Thus, offers higher than a player’s expectation will raise its

expectation and offers lower than its expectation will lower it.

Updating Threshold Estimate Bounds: As a player Pm makes an offer qk
m,n and receives feedback

(a decision) on the offer dk
m,n, it gains information about Pn’s acceptance threshold. We may update

the bounds on the estimates of Pn’s threshold using the following set of rules:

If Pn rejects Pm’s offer, then the lower bound for the acceptance threshold must be at least the offer
that was rejected:

qk
m,n > 0, dk

m,n = 0 ⇒ ak+1
m,n = max{qk

m,n, a
k
m,n} (5)

If Pn accepts Pm’s offer then the upper bound for the acceptance threshold for that player must be
at most the offer that was accepted:

qk
m,n > 0, dk

m,n = 1 ⇒ āk+1
m,n = min{qk

m,n, ā
k
m,n} (6)

The next two conditions occur because acceptance thresholds are dynamic and the bounds for esti-
mates on thresholds for other players may become inaccurate and may need to be reset. If Pn rejects
Pm’s offer and that offer was at least Pm’s current upper bound, then the upper bound increases to
the “fair” offer that Pm expects Pn will accept:

qk
m,n > 0, dk

m,n = 0, qk
m,n ≥ āk

m,n ⇒ āk+1
m,n = de/2e (7)

If Pn accepts Pm’s offer, however the offer is lower than Pm’s current lower bound estimate for Pn,
then decrease the lower bound to zero:

qk
m,n > 0, dk

m,n = 1, qk
m,n ≤ ak+1

m,n ⇒ ak+1
m,n = 0 (8)

Updating Threshold Estimates: The following set of rules are used to modify a player’s estimates
of the other players thresholds: When Pn accepts Pm’s offer, Pm’s estimate of their acceptance
threshold becomes closer to the lower bound, while upon rejection the estimate moves closer to the
upper bound. Both of these updates are done using a convex combination of the current value and
the appropriate bound as follows:

dk
m,n = 1 ⇒ ak+1

m,n = min{βm ak+1
m,n + (1− βm)ak

m,n, 2̄a
k+1
m,n} (9)

dk
m,n = 0 ⇒ ak+1

m,n = max{βm āk+1
m,n + (1− βm)ak

m,n, a
k+1
m,n + 2ε} (10)

The min and max operators ensure that players don’t make unintuitive offers (such as repeating a
just rejected offer) when the adaptation rate is not sufficiently high. The adaptive agent described
above fulfills the properties of the desiderata prescribed to generate behavior that is more aligned
with our expectations in reality.

4 Experiments

Stability of Fair Players: First, we investigated a population of fair agents and discover the condi-
tions under which they maintain their initial characteristics. We choose scenarios where a population
of 6 agents of the same type play a game with e=10 for 100 rounds. Each agent begins with an ac-
ceptance threshold of α0

m = 5, and estimates of other players’ thresholds at a0
m,n = 5, with the

thresholds bounds at ā0
m,n = 5 and a0

m,n = 4, and ε = 0.1. We run 40,000 instances of the game
where βm ∈ {0.00, 0.05, 0.01, . . . , 0.5} and γm ∈ {0.00, 0.01, 0.02 . . . , 0.8}.
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Figure 1: Stability of 6 “fair” players with and without an additional rogue agent. The heat map on
the left depicts stability when there is no rogue. The x and y axes denotes the adaptivity (β) and
the exploration (γ) parameters of the fair players, and darker squares in the heat map indicate higher
probabilities that at least one agent will eventually accept an “unfair” offer. The nine figures on the
right depict the stability when an additional rogue player with βm, γm ∈ {0.1, 0.3, 0.6} is added.

For each game type, characterized by the β and γ values of the agents, we record the likelihood that
the acceptance threshold of at least one of the agents falls below 4.1, indicating that some player
would accept “unfair” offers of 4. The players use the proportional reciprocity method for selecting
their target agents. The results are shown in the heat map in Figure 1 (left). The x-axis denotes the
adaptivity (β) values increasing from left to right and the y-axis denotes the exploration (γ) values
increasing from top to bottom. Darker squares indicate higher probabilities that an agent accepts an
offer of 4.

We see that at low adaptation and exploration rates, the society is able to maintain their egalitarian
nature, but as both rates increase they start falling away. We investigated the scenario for horizons
of 1000 rounds at a coarser discretization and the characteristics of the results were maintained.

The Effect of a Rogue Agent: To further investigate the stability of an egalitarian society, we
observed the effect of adding a player who does not start with the societal norms. Here, we take the
scenarios described earlier and add an agent with an acceptance threshold of α0

m = 1, and estimates
of other players’ thresholds at a0

m,n = 1, with the thresholds bounds at ā0
m,n = 5 and a0

m,n = 4,
and ε = 0.1. We note that the rogue agent’s initial acceptance threshold estimate is lower than the
lower bound of the estimate.

The intended effect of this is that the rogue will initially offer qk
m,n = 1 once to each agent and then

move its estimate up to qk
m,n = 1 and then adapt within the bounds based on its adaptivity rate. We

investigate 9 instances of rogue agents for βm, γm ∈ {0.1, 0.3, 0.6}. The resulting heat maps are
shown in Figure 1. Darker squares indicate higher probabilities that an agent starts accepting offers
of 4. The square on the far left indicates the stability when there is no rogue agent.

The presence of a single rogue agent who only makes a single “lowball” offer and then small “un-
dercutting” offers can significantly affect the stability of the population remaining egalitarian. As
expected, lesser adaptivity and greater exploration rates of the rogue implied greater impact on sta-
bility. Adaptivity, or lack thereof, seems to have a greater influence than the exploration rate.

Reciprocity vs. Randomness: We look at two societies of agents where N = 5 and N = 6. All
agents are the egalitarian type described earlier with γ = 0.1 and β = 0.3. The results for indi-
vidual traces of a single game of each type when the algorithm for making offers used proportional
reciprocity and when agents used random selection are shown in Figure 2.

In the figure, each heat map reflects the number of times a row player made an offer to a column
player. A darker color represents a larger number of offers made from that row player to that column
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Figure 2: Reciprocity vs. Randomness for 5 and 6 “Fair” Players. A detailed description of this
figure is given in the text.

player (The white diagonal indicated no player made an offer to itself). The subfigure to the right of
each heat map shows the evolution of the acceptance thresholds of all the agents over time. We see
that for random selection, the heat map of offers has no obvious pattern. On the other hand, under
proportional reciprocity, agents seem to have paired up to form sustained partnerships.

In the 5-player game with reciprocity (top, left) P1-P4 is a partnership as is P2-P3, while P5 is left
out of the partnerships. We also see that P5 makes offers uniformly to the other agents but does not
receive many offers from them. Its acceptance threshold (the purple line) dives down due to it being
a recipient solely of exploration offers and occasional offers due to proportional reciprocity. In the
6-player game with reciprocity (bottom, left), we have the following partnerships: P2-P3, P1-P5

and P4-P6. The 6-player game with reciprocity has much higher stability than all the other games
as the acceptances threshold for all agents do not vary far from 5.

The games with random selection have multiple agents whose thresholds dive as the random nature
of the offers let various agents be periodically ignored over the course of the trace. The key here
is that reciprocity leads to the evolution of stable partnerships that help keep the egalitarian society
stable as long as members are not ignored.

These results, and the overall issues explored in this paper, provide us with a framework for upcom-
ing experiments with human subjects.
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