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Abstract

Frequently, it is advantageous for an agent to model other agents in order to pre-
dict their behavior during an interaction. Modeling othersas rational has a long
tradition in AI and game theory, but modeling other agents’ departures from ratio-
nality is difficult and controversial. This paper proposes that bounded rationality
be modeled as errors the agent being modeled is making while deciding on actions.
We are motivated by the work on quantal response equilibria in behavioral game
theory which uses Nash equilibria as the solution concept. In contrast, we use
decision-theoretic maximization of expected utility and apply the models within
the framework of interactive POMDPs. Quantal response assumes that a decision
maker is rational, i.e., is maximizing his expected utility, but only approximately
so, with an error rate characterized by a single error parameter. Another agent’s
error rate may be unknown and needs to be estimated during an interaction. We
show that the error rate of the quantal response can be estimated using Bayesian
update of a suitable conjugate prior, and that it has a sufficient statistic under
strong simplifying assumptions. However, if the simplifying assumptions are re-
laxed, the quantal response does not admit a finite sufficientstatistic and a more
complex update is needed. This confirms the difficulty of using simple models of
bounded rationality in general settings.

1 Introduction

In AI, an agent’s (perfect) rationality is defined as the agent’s ability to execute actions that, at
every instant, maximize the agent’s expected utility, given the information it has acquired from
the environment [13]. Let us note two aspects of this definition. First, the fact that the acquired
information may be limited does not preclude perfect rationality. In other words, an agent may
have very limited information but still be perfectly rational. Second, the above definition does not
specify any particular procedure an agent is to use to decidewhich action to execute. Further,
the definition is completely independent of any details of the implementation of any such decision
making procedure.

The notion of bounded rationality received a lot of attention in economics and psychology. Simon
[14] coined the term and suggested it as an alternative to rationality. Simon pointed out that perfectly
rational decision making is often difficult in practice due to limited cognitive and/or computational
resources. He proposed that humans aresatisficers, as opposed to perfect optimizers, and that they
use heuristics to make decisions, rather than optimizationrules. Gigerenzer [7, 6] argued that simple
heuristics could actually lead to better decisions than theoretically optimal procedures. The use of
heuristics was also studied by Kahneman [9], who proposed his own alternative to perfect rationality
called prospect theory. Rubinstein [12] proposed that one needs to model an agent’s decision-making
procedures explicitly in order to model the agent’s boundedrationality adequately.
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This paper builds on an approach to modeling bounded rationality called quantal response [2, 10, 11].
It is a simple model which uses a single error parameter. Quantal response is simple in that it does
not attempt to model the procedures, and their possible limitations, the agent may use to decide on
action. The great advantage of this model is that, first, there exist a myriad of procedural mechanisms
by which perfect rationality could be implemented, heuristics which could be used, and possible
ways in which any of these could have its functionality limited by the specific computational or
cognitive architecture of the agent in question. Second, none of these implementation details and
architectural limitations are observable by the external observer who is doing the modeling. In other
words, quantal response abstracts away the unobservable parameters specific to implementation and
treats them asnoisewhich produces non-systematic departures from perfect rationality.

The models of bounded rational agents we are constructing are intended to be used within interactive
partially observable Markov decision processes (I-POMDPs) [8]. In I-POMDPs, agents maintain be-
liefs about the state of the world, as in classical POMDPs, and about the other agents with whom
they interact. These beliefs are probability distributions spanned on the space of all possible states
of the environment and all possible models of the other agents. Agents best respond to their be-
liefs using decision-theoretic expected utility maximization, like in classical POMDPs. Intentional
models of other agents specify their preferences (payoff functions), action sets, and beliefs, and are
analogous to POMDP-like specifications of the other agents’decision-making. The probabilities
are assigned to various models since the internals of the other agents’ specifications are not directly
observable. In other words, an agent may not know before hand, say, the payoff function of another
agent, but may be able to probabilistically infer their likely payoffs by observing their actions.

To make room for bounded rationality of the other agents, we define a notion of approximately
intentional agent model. It is analogous to perfectly rational agent model but with a noise factor
inversely proportional to an error parameter,λ. According to quantal response [2, 10, 11], probabil-
ities of actions are given by the logit function of the actions’ expected utilities. Thus actions that are
suboptimal are possible, but their probabilities increasewith their expected utilities.

Quantal response specifies the probabilities of an agent’s actions given their expected utilities and
the agent’s error parameter,λ. An additional complication is that an agent’s error parameter is not
directly observable. Instead, it must be inferred based on the agent’s observed behavior. We take a
Bayesian approach to this and propose that the modeling agent maintain a probability distribution
over possible values ofλ for the modeled agent, and that this probability be updated when new
actions are observed. Intuitively, if an agent is observed acting rationally then, over time the error
rate attributed to this agent should decrease (and sinceλ is an inverse error, larger values ofλ should
become more likely). If, on the other hand, the modeled agentis frequently observed acting in ways
that depart from perfect rationality, then the error rate attributed to it should increase (and smaller
values ofλ should become more likely).

Below we show how the update of the error parameter modeling bounded rationality of another
agent can be performed. We also show that in simple special cases, when the interaction isepisodic,
the error rate admits a sufficient statistic. We then derive adistribution overλ that is a member of
a family of conjugate priors. That means that the update of the distribution overλ is particularly
simple and that it results in another distribution in the same family of parametrized distributions.
We further show that if the simplifying assumptions are relaxed, then there is no sufficient statistic
and no conjugate prior overλ. In these cases we derive the update of the error parameter within the
general, and more complex, belief update in I-POMDPs.

2 Logit Quantal Response

For simplicity, we assume that a modeling agent, calledi, is considering the behavior of one other
agent,j. The logit quantal response is defined as follows [2, 10, 11]:

P (aj) =
eλuaj

∑m

l=1 e
λual

, (1)

where{al : l = 1, 2, 3, ...,m} is a set of all possible actions of the agent.P (aj) is the probability of
the agentj taking the actionaj . uaj

∈ R is the expected utility of actionaj to agentj andλ ≥ 0 is
the (inverse) error rate of the agentj. λ represents how rational agentj is: greaterλ makes it more
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likely that j takes actions which have higher utilities. Whenλ → +∞, P (aj) = 1 for the action
which has the highest expected utility1 andP (aj) = 0 for all other actions. This means agentj is
perfectly rational because he always chooses an action withthe best expected utility. Whenλ = 0,
P (aj) = 1/m, ∀j = 1, 2, 3, ...,m, which means agentj chooses actions at random.

It is likely that the error rateλ of agentj is not directly observable to agenti. Bayesian approach
allows agenti to learn this rate during interactions. To do this agenti needs a prior distribution,
f(λ), which representsi’s current knowledge about agentj’s error rate, and to observe agentj’s
action,aj at the current step. The updated distribution is:

f(λ|aj) =
P (aj |λ)f(λ)∫∞

0
P (aj |λ′)f(λ′) dλ′

. (2)

Using the above formula, agenti can maintain his knowledge about agentj’s bounded rationality
by repeatedly updatingf(λ) during interaction.

Formula (2) may not be easy to apply because after updating thef(λ) several times, it becomes more
and more complicated. To overcome this it is convenient to look for a conjugate prior family. In
Bayesian probability, if the posterior distribution is in the same family as the prior distribution, then
this prior is called aconjugate prior[3, 4]. Conjugate priors are convenient because they make the
updating process tractable; one just needs to update the parameters of the conjugate prior distribution
(hyperparameters) to realize the Bayesian update.

3 Static Episodic Environments with Perfect Observability

In this section we consider the simplest case, when agentj’s expected utilitiesual
for all actions are

knownto agenti and remain the same during the interaction. In other words, agentj is not updating
his beliefs since the environment is static and episodic [13] and i is observingj acting in the same
decision-making situation repeatedly. The derivation below follows techniques in [3, 4].

Consider the following family of distributions overλ:

f(λ;u, n) =
eλu/(

∑m

l=1 e
λual )n∫∞

0
eλ′u/(

∑m

l=1 e
λ′ual )n dλ′

, (3)

wheren and u are hyperparameters. Heren is a natural number including zero, andu is re-
stricted by following:u < nmaxl ual

. One can verify (3) is a probability density function since∫∞

0
f(λ;u, n) dλ = 1, given the restrictions overn andu.

Proposition 1: The family of distributionsf(λ;u, n) in (3) is a conjugate family of distributions
overλ in static episodic environments with known utilities of actions.

The proof of Proposition 1 establishes how to update the hyperparameters of our conjugate prior
after observing that agentj executed his actionaj , with expected utilityuaj

:

f(λ;u, n)
aj

−→ f(λ;u+ uaj
, n+ 1). (4)

Note that the integral in the denominator off(λ;u, n) does not always have an analytical solution,
so we have to use numerical methods to calculate its value.

One can verify that once there is a valid prior, all the posteriors are always valid. The question also
arises as to what is an appropriate prior agenti should choose before any observations. Often one
looks for an uninformed prior. In our casef(λ;−ε, 0), whereε > 0 is a small positive value, is such
an uninformed prior; it is almost flat over the positive real values ofλ, as we show in the example
below.

1If there are many, sayh, optimal actions with the same expected utilities, thenP (aj) = 1/h for each of
them.
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4 Example
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Figure 1: Example conjugate prior:f(λ;−0.1, 0)

Let us assume that agentj chooses from among three (m = 3) actions, with following expected
utilities: ua1

= 0, ua2
= 2, ua3

= 10. As we mentioned we assume that the expected utilities
of agentj are known to agenti, and that they do not change. Let the prior bef(λ;−0.1, 0). Let
us first compute the expected value of the error parameteri attributes toj under this distribution:
E(Λ) =

∫∞

0
λf(λ) dλ = 10.0. Using the formula of total probability for each action ofj we get:

P (aj) =
∫∞

0
P (aj |λ)f(λ) dλ. Thus the prior probabilitiesi attributes to each ofj’s actions are:

P (a1) = 0.00524, P (a2) = 0.00699, P (a3) = 0.98777. Figure 1 shows the initial prior. Note that
this uninformative prior assigns relatively high probabilistic weight to high values ofλ and hence
high degree ofj’s rationality.

λ’s Distribution E(Λ) P (a1) P (a2) P (a3)
f(λ;−0.1, 0) 10.0000 0.00524 0.00699 0.98777
f(λ; 29.9, 3) 10.2477 0.00138 0.00229 0.99633
f(λ; 299.9, 30) 10.5309 0.00010 0.00029 0.99961
f(λ; 11.9, 3) 0.1069 0.20663 0.24147 0.55190
f(λ; 119.9, 30) 0.0328 0.28959 0.30785 0.40256

Table 1: Probabilities of agentj’s actions derived from various distributions over error parameterλ.
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Figure 2:f(λ; 29.9, 3), updated after observing three rational actions.

Assume agentj acts rationally and always chooses his best action,a3. Then Figure 2 and Figure 3
show the posterior after three observations (f(λ; 29.9, 3)) and after 30 observations (f(λ; 299.9, 30))
of j’s actiona3. We can see that higher values ofλ become more likely if the agent always chooses
the action with the best utility. We can also compute the probabilities of the three actions under these
two posteriors, which are shown in Table 1.

Now let us assume that agentj behaves randomly. Within the first three actions, he chooseseach of
his actionsa1, a2 anda3 once. The updated distribution overi’s error parameter is thenf(λ; 11.9, 3),
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Figure 3:f(λ; 299.9, 30), updated after observing 30 rational actions.
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Figure 4:f(λ; 11.9, 3), updated after observing three random actions.

which is shown in Figure 4. Further, if withinj’s 30 actions he choosesa1 for ten times,a2 for ten
times, anda3 for ten times; then the posterior isf(λ; 119.9, 30), which is shown in Figure 5. The
results are intuitive. Thus, if agentj behaves randomly, lower values ofλ, indicating stronger
departure from perfect rationality, become more likely. Probabilities of the three actions under these
two posteriors are also shown in Table 1.

5 Sequential Dynamic Environment with Perfect Observability of Finite
Types

In this section, we extend our approach to more complex case of dynamic sequential environment.
Again, we assume that expected utilities ofj’s actions are known toi, but now, since agentj may be
updating his beliefs, the expected utilities of his actionsdo not remain constant but can take a finite
number of values. We refer to each of the beliefs of agentj, together with his payoff function and
other elements of his POMDP, asj’s type,θj . Thus, the set of possible types of agentj, Θj , hasK
possible elements1, 2, ...,K. We denoteU(aj |θj = k) = uaj ,k, wherek = 1, 2, ...,K and assume
that indexk is observable (or computable) by agenti. Then the logit quantal response (1) for the
probability of agentj taking actionaj given hiskth type is:

P (aj |k, λ) =
eλuaj,k

∑m

l=1 e
λual,k

. (5)

Now Bayesian update, analogous to equation (2), becomes:

f(λ|aj , k) =
P (aj |k, λ)f(λ)∫∞

0
P (aj |k, λ′)f(λ′) dλ′

. (6)
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Figure 5:f(λ; 119.9, 30), updated after observing 30 random actions.

We now have a proposition analogous to Proposition 1 in Section 3. Consider the following family
of distributions:

f(λ;u, n1, n2, ..., nK) =
eλu/

∏K

k=1(
∑m

l=1 e
λual,k)nk

∫∞

0
eλ′u/

∏K

k=1(
∑m

l=1 e
λ′ual,k)nk dλ′

, (7)

wherenk = 0, 1, ..., ∀k = 1, ...,K; u <
∑K

k=1(nk maxl ual,k). One can verify that (7) is a
valid probability density function since integral of the denominator converges if and only ifu <∑K

k=1(nk maxl ual,k).

Proposition 2: The family of distributions in (7),f(λ;u, n1, n2, ..., nK) is a conjugate family of
distributions overλ in a sequential dynamic environment with perfect observability of finite number
of types.

Similarly to the simpler case of Proposition 1, the proof of Proposition 2 establishes the update of
the hyperparameters of the conjugate prior based on the observed action,aj , with expected utility
uaj ,k :

f(λ;u, n1, n2, ..., nK)
aj ,k
−→ f(λ;u+ uaj ,k, n1, n2, ..., nk−1, nk + 1, nk+1, ..., nK). (8)

Similarly to Section 3, once there is a valid prior, e.g.f(λ;u, n1, n2, ..., nK), all the posteriors are
always valid. An uninformative prior agenti can choose before observing any ofj’s actions can be
f(λ;−ε, 0, 0, ..., 0). Then after any number of observations the currentu is the accumulated utility
of all actions the agent has taken minusε, and currentnk is the counter of occurrence of thekth
type.

6 Sequential Dynamic Environments with Perfect Observability of
Continuous Types

Let us consider an even more general case, in which the expected utilitiesual
are not limited to a

finite number of values but can lie in some interval or even on the real line:

P (aj |u, λ) =
eλuaj

∑m

l=1 e
λual

, (9)

whereul < ual
< ul

′, l = 1, 2, ...,m, ul ≥ −∞ andul
′ ≤ ∞ are lower and upper bounds

of the expected utilitiesual
, and whereu is a vector of expected utilities of allm actions,u =

(ua1
, ua2

, ..., uam
). Again assumeual

are known to agenti, and he observes agentj’s actionaj .

Similarly to Section 5, the Bayesian update equation with continuous types is

f(λ|aj ,u) =
P (aj |u, λ)f(λ)∫∞

0
P (aj |u, λ′)f(λ′) dλ′

. (10)
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If we want to update the distribution ofλ it would be convenient to find a conjugate prior of (9)
for λ. However, forming a conjugate prior in this case is not easy,and may be impossible. The
reason is that the construction of conjugate prior distributions [3, 4] is based on the existence of
sufficient statistics of fixed dimension for the given likelihood function (formula (9) in this case).
However, under very weak conditions, the existence of fixed dimensional sufficient statistic restricts
the likelihood function to the exponential family of functions [1, 5]. Unfortunately, (9) does not
belong to the exponential family with continuous utilitiesu whenm ≥ 2.

In other words, in this case, there is no known way of derivinga family of conjugate priors. Two
ways of circumventing this difficulty present themselves. First is to discretizeu and approximate
it by fitting its values into a finite number of types. The second one is to give up on conjugate
priors altogether and use numerical approximation to updateλ. We pursue this last alternative in the
section below, but in the more general case when the types of agentj are not observable.

7 Sequential Dynamic Environments with Unobservable Types: I-POMDPs

It turns out that the logit quantal response can be included in interactive POMDPs (I-POMDPs)
[8] to model bounded rationality of agents without assumingthat their types (i.e., payoff functions
and beliefs) are known to other agents. As we mentioned, we dothis by allowing agenti to define
approximately intentional models of agentj by including an error rate,λ, into j’s type. We define
agenti’s I-POMDP as:

I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉, (11)

where:

• ISi = S×Θλ
j is a set of interactive states, whereS is the set of physical states andΘλ

j is a
set of possible approximately intentional models of agentj. An approximately intentional
model ofj is defined asθλj = 〈bj , θ̂

λ
j 〉, wherebj is agentj’s belief state, and̂θλj = 〈θ̂j , λj〉.

In θ̂λj , θ̂j = 〈A,Ωj , Tj , Oj , Rj , OCj〉 is j’s frame, andλj is j’s (inverse) error rate, as
before. Agentj’s belief bj is a probability distribution over the physical states and agent
i’s approximately intentional models, namelybj ∈ ∆(S ×Θλ

i ).

• A = Ai ×Aj is the set of all joint actions of the agents.

• Ti : S ×A× S → [0, 1] is agenti’s transition function.

• Ωi is agenti’s possible observations.

• Oi : S ×A× Ωi → [0, 1] is agenti’s observation function.

• Ri : ISi ×A → R is agenti’s reward function.

If agenti is modeling agentj as an approximately intentional I-POMDP agent who behaves rational
with errors represented by logit quantal response, then agent i updates his beliefs within I-POMDPs
as:

bti(is
t) =β

∑

ist−1:θ̂λ,t−1

j
=θ̂

λ,t

j

bt−1
i (ist−1)

∑

a
t−1

j

Pr(at−1
j |θλ,t−1

j )Oi(s
t, at−1, oti)

×
∑

ot
j

τ
θ
λ,t

j

(bt−1
j , at−1

j , otj , b
t
j)Oj(s

t, at−1, otj)Ti(s
t−1, at−1, st),

(12)

in whichPr(at−1
j |θλ,t−1

j ) is given by logit quantal response:

Pr(at−1
j |θλ,t−1

j ) =
eλ

t−1

j
U(aj |θ

t−1

j
)

∑m

l=1 e
λ
t−1

j
U(al|θ

t−1

j
)
. (13)

Givenj’s typeθj , the expected utilities of each action is
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U(aj |θj) =
∑

is

ERj(is, aj)bj(is) + γ
∑

oj∈Ωj

Pr(oj |aj , bj)U(〈SEθj (bj , aj , oj), θ̂j〉), (14)

whereaj ∈ Aj ( Aj is j’s action set).

8 Conclusion

In this paper we postulated that bounded rationality of agents be modeled as noise, or error rate, that
perturbs their rational action selection. Since error rates of other agents are not directly observable
we presented ways to learn these parameters during interactions. The learning uses Bayesian up-
date, for which it is convenient to use a family of conjugate priors over the possible values of the
error rate. We found the conjugate priors of logit quantal response functions for static and episodic
environments, and for sequential dynamic environments with finite number of observable types. The
existence of conjugate priors under these assumptions makes the task of learning another agent’s er-
ror rate simple and tractable. However, we have also shown that if the space of types of the modeled
agent is continuous, then the quantal response likelihood does not satisfy the precondition needed
for construction of conjugate priors over the error rates. Discretizing their utilities to make continu-
ous types fit into finite pre-specified types can be a way of solving this difficulty. Another method is
to abandon the search for conjugate priors and use general updates. These updates, derivable from
the I-POMDP framework, do not assume that other agents’ payoff functions and beliefs are known,
but are quite difficult to compute in realistic cases.
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