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Abstract

Modeling the joint behavior of multiple imperfect agents from a small number
of observations is a difficult, but important task. In the single-agent, decision-
theoretic setting, inverse optimal control has been successfully employed. It views
observed behavior as an approximately optimal solution to an unknown decision
problem, and learns the decision problem’s parameters that best explains the ob-
served behavior. In this work, we introduce the Inverse Correlated Equilibrium
problem, the multi-agent extension of inverse optimal control to normal-form
games. We describe two approaches for this problem and discuss how they enable
prediction of behavior without knowledge of the game’s reward function. The
first approach solves a convex optimization problem, but, unfortunately, often re-
stricts the ability to generalize more than we desire. The second approach is more
computationally intensive, but exhibits better worst-case performance guarantees.

1 Introduction

Though frameworks for optimal or rational decision making are useful for prescribing behavior that
an agent should perform, they are often ill-suited for predicting actual behavior. This is because
real behavior is typically not consistently optimal or rational; it may be influenced by factors that
are difficult to model or subject to various types of error when executed. Recent research in imita-
tion learning, and specifically inverse optimal control, has bridged the gap between prescriptive and
predictive applications of decision frameworks in the single-agent setting [1, 8, 11, 12]. Success-
ful applications include learning and prediction tasks in personalized vehicle route planning [12],
robotic crowd navigation [4], quadruped foot placement and grasp selection [9]. A reward func-
tion is learned by those techniques that best explains demonstrated behavior and approximates the
optimality criteria of prescriptive decision-theoretic frameworks.

Motivated by those successes, we extend inverse optimal control to multi-agent settings in this work.
Game-theoretic concepts such as rationality and regret measures replace the utility and optimality
measures of decision theory in this setting, and help assess how decision are made. Our approach
learns analogs to these from limited (and potentially irrational and suboptimal) observational data.
Importantly, the probabilistic reasoning that results from our formulation allows an appropriate treat-
ment of the imperfections inherent in real data. In the following sections, we will review game the-
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ory and the principle of maximum entropy. After, we present two approaches that combine these
two concepts to provide strong predictive performance guarantees using the rationality constructs of
game theory. We conclude with some brief experimental results and a discussion of future work.

2 Background

2.1 Game Theory

Matrix games are the basic building block used by Game Theory to study the strategic interactions
between multiple agents in an environment. Most well known matrix games, including the “Prison-
ers Dilemma” game and the “Battle of the Sexes” game, are merely toy problems with interesting
strategic properties, but many interesting problems, such as negotiations among parties with con-
flicting interests or collaboration within teams, can be represented as matrix games.
Definition 1. A normal-form game [10], or matrix game, is a tuple Γ = (N,A, u) where

• N is a finite set of players,

• A = ×i∈NAi is the set of joint-actions, where Ai is player i’s finite set of actions, and

• u contains a ui : A 7→ R, the utility function for player i, for every i ∈ N .

For notational convenience, we let A−i = ×j 6=i,j∈NAj represent the set of actions for players
other than i, and define a−i ∈ A−i to be the vector a excluding component i. We let Amax =
maxi∈N |Ai|.
In this work, we are concerned with the multi-agent setting where players’ utilities are parametrized.
A vector of features is associated with each joint combination of actions.
Definition 2. Let the tuple Ξ = (N,A, F ) denote a normal-form game with a linear utility function.
That is, for every joint-action, each player has a feature vector fi(a) ∈ [−1, 1]K and ui(a|w∗) =
〈fi(a), w∗〉 for some (unknown to us) vector of feature weights w∗ ∈ RK .

To allow for agents to cooperate, as not all games of interest are necessarily competitive in a strong
sense, we will consider a solution concept that incorporates a coordination device. In particular,
prior to play, the environment will draw a joint-action x from a distribution σ and communicate to
each player xi, their portion of the joint-action. Then, each player will simultaneously choose an
action ai = gi(xi). After, each player is assigned reward by their utility function depending on the
joint-action a. We call the function gi a modification function [2].
Definition 3. A modification function for player i is a function gi : Ai 7→ Ai.

In a sense, we can measure the quality of the coordinating distribution by how much a player can
benefit by deviating from the recommended action. This measure is known as swap regret and leads
to the solution concept known as a correlated equilibrium.
Definition 4. The instantaneous regret [2] experienced by player i for choosing action ai when all
other players play a−i with respect to modification function gi is,

regreti(a, gi|w) = ui(gi(ai), a−i|w)− ui(a|w). (1)

Definition 5. The switch modification function, switchx→y
i : Ai 7→ Ai, is defined as,

switchx→y
i (ai) =

{
y if ai = x
ai otherwise . (2)

Definition 6. The expected regret for switching from action x to action y for player i when joint-
actions are drawn from σ is

rswitch
i (x→ y|σ,w) = Ea∼σ [regreti(a, switchx→y

i |w)] . (3)

Definition 7. The expected internal regret on action x for player i under distribution σ is

rinternal
i (x|σ,w) = max

y∈Ai

Ea∼σ [regreti(a, switchx→y
i |w)] . (4)
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Definition 8. The expected swap regret [2] for player i when joint-actions are drawn from σ is

Rswap
i (σ|w) =

∑
x∈Ai

rinternal
i (x|σ,w). (5)

A distribution σ over A is an ε-correlated equilibrium [2] if for all i ∈ N ,

Rswap
i (σ|w) ≤ ε. (6)

In words, a distribution σ is a correlated equilibrium if no player can benefit by deviating from
the recommended action given that all other players play according to the recommendation. A
distribution is an ε-correlated equilibrium if no player can benefit more than ε by deviating, again
assuming the others play according to their recommendation.

For readers familiar with the Nash equilibrium solution concept, we note that the correlated equilib-
rium is an extension of this concept. That is, a Nash equilibrium is a correlated equilibrium where
the recommended actions are chosen independently. Additionally, a persuasive argument for the
validity of the correlated equilibrium can be made as one can be reached by simple evolutionary
dynamics, whereas no such dynamics are known for the Nash equilibrium [2].

2.2 The Principle of Maximum Entropy

Information theory provides tools for evaluating the predictive power of a distribution. One key
quantity is Shannon’s information entropy, which measures the uncertainty or information content.
Definition 9. The entropy of a distribution σ over a finite set X is

H(σ) = −
∑
x∈X

σ(x) log σ(x). (7)

The principle of maximum entropy advocates choosing the distribution with maximum entropy
subject to known constraints [5].
Definition 10. The maximum entropy distribution is defined as:

σMaxEnt , argmax
σ

H(σ) (8)

subject to: g(σ) = 0 and h(σ) ≤ 0.

The constraint functions, g : σ 7→ RK1 and h : σ 7→ RK2 , are typically chosen to capture the
important or most salient characteristics of a distribution. When those functions are affine and
convex, respectively, in the elements of the probability distribution, σ, finding this distribution is a
convex optimization problem. This distribution has important guarantees for prediction.
Lemma 1 (from [3]). The maximum entropy distribution minimizes the worst-cast log-loss,
−

∑
x∈X σ̃(x) log σ(x), when nature adversarially chooses σ̃(x) subject to provided constraints.

As log-loss is a common criteria for evaluating machine learning predictions, the principle of max-
imum entropy serves as an underlying justification for many existing machine learning techniques
(e.g., logisitic regression, Markov random fields, conditional random fields). In the context of multi-
agent behavior, it has been employed to obtain correlated equilibria with predictive guarantees in
normal-form games when the utilities are known [7]. We employ the principle of maximum entropy
in this work to provide predictive guarantees in settings when players’ utilities are unknown.

3 The Inverse Correlated Equilibrium Problem

Imitation learning aims to accurately predict future behavior from examples of past decisions. That
is, we cannot make assumptions as to what goal each agent is attempting to achieve, or even if
they are acting in an optimal fashion to achieve this goal. Formally, we model our interactions
as normal-form games with unknown utility functions. As a substitute for the utility function, we
assume features for each joint-action are available assume further that the true reward function is
a linear function of those features. It is arguably much easier to model real world situations under
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this framework than it is to construct an accurate reward function. For example, often it is the case
that traveling a distance or spending time to complete a task will result from a particular decision,
both of which can be easily measured though exactly how these quantities translate into “utility” is
unclear and may depend on the agents’ internal preferences.

Problem (Inverse Correlated Equilibrium). Given a normal-form game with unknown utility func-
tion, Ξ = (N,A, F ) and a sequence of observations, {a(j) ∈ A} for j = {1, 2, . . . ,m}, we denote
the empirical distribution of {a(j)} as σ̃, the demonstrated behavior. From σ̃, we wish to produce a
correlating distribution σ that can accurately predict the future behavior of the agents in the system.

Property 1. We say that σ preserves the quality of σ̃ if for any w ∈ RK and for all players i ∈ N ,

Rswap
i (σ|w) ≤ Rswap

i (σ̃|w). (9)

That is, for any reward function, σ is no further from being a correlated equilibrium than σ̃.

3.1 Feature Regret Matching

Our first imitation learning approach employs constraints so that the distribution’s expected switch
regret matches that of the demonstrated joint-action distribution, σ̃, for all possible utility functions:

∀w∈RK

{
∀i∈N,x,y∈Ai

rswitch
i (x→ y|σ,w) = rswitch

i (x→ y|σ̃, w)
}

. (10)

Note that matching the expected switch regrets is stronger than preserving the quality of σ̃.

Due to the linear definition of the game utility functions, matching the expected switch regret of the
demonstrated behavior is satisfied by distributions that match expected feature differences with the
empirical distribution, as shown by the constraints in the following definition.

Definition 11. The maximum entropy feature regret matching distribution is

argmax
σ∈∆A

H(σ) (11)

∀i∈N,x,y∈Ai,k

∑
a−i∈A−i

σ(x, a−i)
[
fk

i (y, a−i)− fk
i (x, a−i)

]
=

∑
a−i∈A−i

σ̃(x, a−i)
[
fk

i (y, a−i)− fk
i (x, a−i)

]
.

Here, we use superscript k to denote the kth entry in the feature vector.

Lemma 2. The maximum entropy feature regret matching distribution preserves the quality of σ̃.

This distribution provides minimal worst-case log-loss guarantees of all the distributions that match
feature regrets with the demonstrated distribution’s feature regrets. However, note that for N players
and K features there are O(NA2

maxK) constraints, which each correspond to a free parameter in
the Lagrangian of the optimization. A demonstrated action distribution has O(AN

max) values. Thus,
for small numbers of players there are more free parameters than data points, and generalization is
difficult—the learned distribution will exactly match the demonstrated distribution.

3.2 Internal Regret Matching

To provide better generalization from demonstrated joint action distributions, and thus allowing
generalization in two-player scenarios, a less constrained optimization is needed. Fortunately, the
above constraints are tighter than is necessary. That is, there exists distributions σ that preserve
the quality of σ̃, but that do not match the expected switch regrets. To achieve this goal, we will
construct a set of linear inequalities guaranteeing that, under any utility function, the internal regret
on every action for every player cannot exceed that of the demonstrated behavior.

Definition 12. Choose Ki(x, y′|F, σ̃) to be the corner points of the polytope defined by the con-
straints ∑

a−i∈A−i

σ̃(x, a−i) [〈fi(y, a−i), w〉 − 〈fi(y′, a−i), w〉] ≥ 0,∀y ∈ Ai (12)

−1 ≤ wi ≤ 1 (13)
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Algorithm 1 MaxEntICE-ExpGrad

1: Let σ(1) ← Uniform(A)
2: Let w(1) ← 1
3: Let η ←

√
N log(Amax)/T/K

4: For k = 1, 2, . . . , T

5: w(k) ← max|w|≤1 maxi∈N Rinternal
i (σ|w)−maxi∈N Rinternal

i (σ̃|w)
6: i(k), x(k), y(k) ← argmaxi∈N,x,y∈Ai

∑
a−i∈Ai

σ(x, a−i)
[〈

fi(y, a−i), w(k)
〉
−

〈
fi(x, a−i), w(k)

〉]
7: ∂σ

(k)
x,a−i(k) ←


〈
fi(k)(y(k), a−i(k)), w

〉
if x = y(k)〈

−fi(k)(x(k), a−i(k)), w
〉

if x = x(k)

0 otherwise
8: w

(k+1)
a ← w

(k)
a · exp(−η · ∂σ

(k)
a )

9: σ(k+1) ← w(k+1)/
∣∣∣∣w(k+1)

∣∣∣∣
1

Player i would be best off to deviate from x to y′ under any utility function in Ki(x, y′|F, σ̃).
Furthermore, the utility functions in Ki(x, y′|F, σ̃) cover all of the utility functions where this is the
case. That is, any utility function where player i would prefer to switch from x to y′ is a positive
combination of the utility functions in this set. As a consequence, we only need to check that a
candidate σ have no more internal regret than σ̃ for a finite number of possible utility functions.

Lemma 3. If, for all players i ∈ N , all actions x, y′ ∈ Ai and all w ∈ Ki(x, y′|F, σ̃), σ satisfies

max
y∈Ai

∑
a−i∈A−i

σ(x, a−i) [〈fi(y, a−i), w〉 − 〈fi(x, a−i), w〉] ≤∑
a−i∈A−i

σ̃(x, a−i) [〈fi(y′, a−i), w〉 − 〈fi(x, a−i), w〉] , (14)

it has no more expected internal regret than σ̃ and, thus, preserves its quality.

As in the feature regret matching case, we can use convex optimization techniques to choose the
maximum entropy distribution that satisfies these constraints as to minimize the log-loss in the
worst-case. Unfortunately, the number of constraints above, though finite, can be exponential in
K. Luckily, most do not matter when it comes to determining the maximum entropy distribution.
That is, using constraint generation is an appealing alternative to enumerating the corner points of
Ki(x, y′|F, σ̃). Compared with feature regret matching, this approach more easily generalizes from
smaller amount of data since fewer measures must be estimated and fewer constraints satisfied.
However, it necessarily does not match as many of the characteristics of demonstrated behavior.

Next, we describe a method for solving the maximum entropy internal regret matching problem in
time polynomial in the number of features. Consider the optimization problem:

min
σ∼A

max
w

max
i∈N

Rinternal
i (σ|w)−max

i∈N
Rinternal

i (σ̃|w) (15)

subject to: ||w||1 ≤ 1

We observe that this optimization has an optimal value of 0 that is achieved by any distribution that
matches the internal regret of σ̃. Furthermore, the objective of the outer minimization is convex in
σ. The objective of the inner maximization, though not convex in w, can be solved efficiently using
a combination of case analysis and linear programming. That is, we can compute gradients with
respect to σ. As exponentiated gradient descent implicitly incorporates an entropy regularizer to
the objective that it minimizes, we can efficiently approximate the maximum entropy internal regret
matching distribution [6]. This approach is presented as Algorithm 1.

Lemma 4. MaxEntICE-ExpGrad has a running time of O(N2AN+4
max K · LP(K, NA2

max + K)
and is within ε of the optimal maximum entropy internal regret matching policy after T =
4K2N log(A)/ε2 iterations, where LP(n, m) is the complexity of solving a linear program with
n variables and m constraints.
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Straight Stop
Straight -10,-10 1,0

Stop 0, 1 0,0

Figure 1: Payoff matrix for chicken

Straight Stop
Straight 0.037 0.333

Stop 0.333 0.297

Figure 2: σMaxEnt for chicken

4 Experimental Results

For our experiments, we used the well known game Chicken, displayed in Figure 1. Chicken is a
two-player general sum game. Each player decides whether to drive straight, or to avoid the other
player. If both players drive straight, they collide and both receive a penalty. If one player drives
straight while the other remains stopped, the moving player gets a slight reward. This game models
traffic at an intersection and a correlation device in this case could be a traffic signal.

As features, we used the actual game’s reward. Thus, the true reward function is w∗ = 1. The
demonstrated behavior provided to the algorithm has one player driving straight 60% of the time,
and the other the remaining 40% – a correlated equilibrium. The maximum entropy internal regret
matching distribution is shown in Figure 2. Though this distribution has the players crashing about
4% of the time, it is also a correlated equilibrium.

5 Conclusion and Future Work

In this paper, we have extended inverse optimal control to the multi-agent setting by combining the
game-theoretic concept of regret with the information-theoretic concept of maximum entropy. The
resulting probability distribution over joint actions provides important regret-based guarantees and
predictive guarantees with respect to demonstrated training data. The objective of our future work
is to transfer the knowledge learned using this technique in one game setting to make predictions of
behavior in other game settings or with other combinations of players. Extending this approach to
sequential games and stochastic games also remains as important future work.
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