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Abstract

The dimensionality of optimization problem arising within multi-market trading
task grows exponentially with a growing number of markets. To prevent the di-
mensionality problem, multi-market trading is represented as a multi-participant
decision making problem with finite common capital. Each local DM task is a
single-market trading enriched by an ability to share a part of local capital with
other local DM tasks (participants). The paper provides formulation of the prob-
lem and basic algorithmic steps. The approach is illustrated on the real market
data.

1 Introduction

The trading task is a challenging problem for the most mathematics and economists. The trading is
based on price speculation, where a trader (speculator) tries to buy cheep a contract, waits for price
increase and then earns money by reselling the contract. The market speculation became a stochastic
game, when speculator bets whether the price increase or decrease.

To design the trading strategy, speculators use different methods. These methods can be divided
into two main categories: fundamental and technical analysis. The methods of fundamental analysis
suppose that observed price is not reflecting the real price, but it is the only consequences of some
real events in the world. Therefore the prediction is based on analysis of interest rates, inflation,
the market state, actual news and activities of different institutions [1, 2, 3]. In contrast, methods
of technical analysis, based 100 years ago [7], suppose that the observed price contains enough
information to make a prediction, hence these methods primary deals with price sequences, so-called
charting [4], indicators, such moving averages, and other measurable exchange variables.

Classical investing methods based on the fundamental or technical analysis serve primary for stock
trading and are well developed for long-time investment in terms of decades, but we want to design
the frequently trading system, therefore the methods are not suitable. Beside, the successful meth-
ods, if any, are not advertised everywhere and are kept in strict confidence. So up to the author’s
best knowledge, there is no known methodology how to design optimal strategy for speculators.

Our approach works with observed price sequences [5, 9] and can be classified as technical analy-
sis. Recently several additional channels have been considered as well [8]. Our previous methods
were designed for a single market with a restricting assumption of infinite capital to invest. That
assumption allowed to solve a multiple markets trading problem market-by-market independently.

This paper deals with an extension of the task for constrained capital and multiple markets (Sec.
2). The dimensionality of obtained problem grows exponentially with a number of markets. To
prevent the dimensionality problem, the problem is represented as multi-participant decision making
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problem with finite common capital. Each local DM task is a single-market trading enriched by an
ability to share a part of local capital with other local DM tasks (Sec. 3). The approach is illustrated
on the real market data (Sec. 4).

2 Trading task

The exchange of valuables primary serves to buying and selling of valuables. The exchange consists
of markets. Each market is related to one type of valuables. We consider commodity contract
exchange, therefore a contract represents the elementary tradeable part.

The market sets the price of contracts and allows to buy and sell them. A player on the exchange
we are interested in is a speculator, i.e. a participant, who earns money not by owing of contracts
but their reselling. The speculator can speculate for the price increase as well as its decrease. At the
beginning of the trading cycle, the speculator declares, whether he speculates for the price increase
or decrease, and declares the number of contract for this speculation. It is said to open the position.
Then, the speculator waits for the price change (it is said to stay in the position). And finally, he
declares, that he closes the position. The speculator earns money, when the price behavior follows
his expectations, otherwise he looses. The gain or loss equals to the price change minus transaction
cost for each contract held in the position. The speculator operates parallel at multiple markets.

2.1 Notation

We work with nmarkets, each denoted by k ∈ {1, 2, . . . , n}. The time is discrete t ∈ {1, 2, . . . , T},
where T is so-called trading horizon.

The variables denoted by the capital letters are vectors related to all nmarkets while variables related
to the kth market are denoted by the lower-case letters and a subscript k. Both vectors and scalars
related to time indexed by a subscript t.

Price Yt = (y1,t, y2,t, . . . , yn,t)
′ is a vector of prices in time t.

Decision Ut = (u1,t, u2,t, . . . , un,t)
′ is a vector of characterizing the positions chosen by the spec-

ulator. Each element uk,t characterizes the price direction and the number of contracts in a
position. Position uk,t can be decrypted as follows: uk,t > 0 for price increase, uk,t < 0
for price decrease, and the absolute value |uk,t| gives the count of contracts in the position.

Transaction cost P = (p1, p2, . . . , pn)
′ is a vector of a normalized transaction cost per contract.

The transaction cost is paid for any change of the position, i.e. whenever uk,t changes
according to uk,t−1, it is paid pk|uk,t−1 − uk,t| as transaction cost.

Capital Ct is a scalar variable characterizing the amount of the speculator money, the hard cash
summed with a value of contracts held in open positions. The capital related to one market
is denoted by ck,t and Ct =

∑n
k=1 ck,t.

Gain Gt is a scalar variable characterizing gain or loss obtained at time t. The gain related to one
market is gk,t and Gt =

∑n
k=1 gk,t.

2.2 Task definition

The speculator enters the game with initial capital C0. The exchange offers n markets to speculate
and the speculator designs a decision Ut = (u1,t, u2,t, . . . , un,t)

′. The decision is designed at each
time t up to the trading horizon T , i.e. t ∈ {1, 2, . . . , T}.
The gain obtained at each time t is:

Gt = (Yt − Yt−1)′Ut−1 − P ′|Ut−1 − Ut|, (1)

where Yt = (y1,t, y2,t, . . . , yn,t)
′ is a vector of prices at time t, P = (p1, p2, . . . , pn)

′ is a vector of
transaction costs. The speculator’s capital Ct changes via

Ct = Ct−1 +Gt = C0 +

t∑
i=1

Gi.
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At each time t the speculator cannot invest more than available capital, i.e., Y ′t |Ut| ≤ Ct. Maximiz-
ing the capital under this constraint leads to the recommendation to bet all available capital to the
most promising market. This is very risky, therefore to minimize the risk, the speculator distributes
the capital between several markets. This is controlled by the second constraint yk,t|uk,t| ≤ M for
k ∈ 1, . . . , n, where the speculator sets the maximal capital M usable at one market.

Hence, the solved task can be written as the maximization of an expected value of the capital over
the horizon CT :

max
Ut

E [CT ] = max
Ut

E

[
C0 +

T∑
i=1

(Yi − Yi−1)′Ui−1 − P ′|Ui−1 − Ui|

]
(2)

where E [.] is an expected value. The constraints for the task have the following shape:

Y ′t |Ut| ≤ Ct (3)
yk,t|uk,t| ≤M for k ∈ {1, . . . , n} (4)

The absolute value |.| in the gain function and the constraint (3) makes the optimization task growing
with n. As a consequence, we should work with 2n gain functions and (2n+n) constraints to design
one decision vector Ut. The typical speculator works at 10-50 markets, which makes the task non-
computable in real time. Therefore, to support multiple market trading on-line an alternative task
formulation should be searched.

3 Multi-participant solution

Let us represent the n-dimensional trading task as a collection of n local one-dimensional DM tasks,
where each designs DM strategy at one market.

The main issue of the proposed solution is in sharing the common capital. Whereas the multi-
dimensional task optimizes the capital between all markets, the one-dimensional does not. Thus, an
extra feature must be added to one-dimensional task to supply the capital sharing. To do this, one-
market trading is considered as a virtual participant working at one market. The participant enriched
by an ability to communicate with other participants and to offer his ”redundant” capital or to ask
for additional capital.

Note the bidding and asking of the capital should only supply the capital sharing, and the results
are not expected to reach such good values as optimization results. But we expect the comparable
quality without exponential growing of the overall problem.

3.1 Participants settings

This paragraph describes an algorithm of the solution.

3.1.1 One-market trading task

The initial capital C0 is divided onto n parts ck,0 = C0/n, k ∈ {1, . . . , n}, which is given as initial
capital to each participant. Then, the kth participant solves one-dimensional analogy of the original
task (2)-(4), where the aim is to maximize the expected gain:

max
uk,t

E

[
T∑

i=1

(yk,i − yk,i−1)uk,i−1 − pk|uk,i−1 − uk,i|

]
(5)

under the condition
yi,t|ui,t| ≤M. (6)

The task (5) cannot be formulated by maximization of the capital ck,t (in analogy with (2)) because
the participants can maximize their local capital by asking only, without any market transaction.
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3.1.2 Capital sharing

The state of the k-participant’s capital at time t can be expressed via:

ck,t = ck,0 +

(
t∑

i=1

(yk,i − yk,i−1)uk,i−1 − pk|uk,i−1 − uk,i|

)
−

(
t∑

i=1

lk,t

)
− pk|uk,t|. (7)

The first term is initial capital. The second one is a gain obtained by contract reselling, it is one-
dimensional analogy of the gain (1) summed over the time. The third one is a sum of lent capital
lk,t, which is the capital provided to other participants. The lent capital is one variable containing
both capital borrowed from other participants (lk,t < 0) and lent to other participants (lk,t > 0). The
fourth term is capital required to close the opened position. To close the position it is necessary to
hold zero contracts and the fourth term expresses the transaction costs for the closing the position.

Given the present value of the capital ck,t, the participant can perform two actions: to ask for (ck,0−
ck,t), when ck,t < ck,0, or to bid α(ck,t − ck,0), when ck,t ≥ ck,0. α characterizes the ratio of
bidding free capital, the setting of the coefficient allows to enhance or to reduce the capital flow
between the participants. The ask cannot be modified by such a coefficient and its full value is used.

The pairing of bids and asks opens a wide area for research, we use one of the simplest approach.
The biggest bidder sorts the askers from lowest ask to highest one. Then the bidder try to satisfy the
lowest askers. Consequently, the second biggest bidder try continue in satisfying. Until there is some
bid or ask. This approach tries to minimize the risk, when the capital is not enough. Moving the
capital to the smallest asker can start his work and bring new money to the shared capital, whereas
moving the capital to the biggest asker, the capital can be lost quickly. We expect that the quality
of participants is characterized by their profit, therefore it seems better to help the participants with
small loss.

4 Experiments

4.1 Settings

The experiments were performed for three markets (n = 3): Cocoa (CSCE), Petroleum-Crude Oil
Light (NMX), and 5-Year U.S. Treasury Note (CBT). The available price data are sampled with a
day period, at the end of trading day (so-called close prices). The used data were from January 1990
until October 2004, which makes 3700 samples.

The approximative solution of (2) and (5) is presented in [5, 6]. The solution extended by constraints
(3) or (4) served as basic settings for the experiments.

To be most close to the original task, the lent coefficient was set to the maximal value, α = 1, which
should maximize the bid between the participants.

The maximal capital, which can be invested at one market, the constraints (4) and (6), were set to
the value of $50000 USD. Various values of initial capital C0 were used, because the choice of C0

influences the capital biding and asking. The initial capitals were selected to cover the both situation:
each participant has less capital than may invest in one step (C0 < nM ), and each participant has
more capital than he may invest (C0 > nM ). In the experiments with multidimensional optimization
task (Sec. 2), the initial capital sets, which constraint is active more (constraint (3) or (4)).

4.2 Results

The quality of the obtained results was evaluated by the final gain, which is a difference between the
final capital CT and the initial capital C0:

CT − C0 =

T∑
i=1

Gi.

Due to different initial capital C0, the percent profit better characterizes the quality of obtained
results:

PP =
CT

C0
× 100%− 100%.
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The results overview is in Table 1.

The original formulation (2)-(4) yields negative results for lower values of initial capital. This is
caused by the active constraint (3), which importance decreases with the growing initial capital,
while importance of the constraint (4) grows. The second reason for worse values is a fact, that
the multi-dimensional optimization takes into account predictions for all markets and distributes
the capital according to the ratio of predictions. This ratio changes often, which causes the higher
transaction costs. With the growing initial capital, redistribution of the capital is not required, be-
cause capital is enough to have all position at maximal values allowed by the constraint (4) and the
importance of the ratio between predictions decreases.

The multi-participants solution (Sec. 3) yields similar behavior at three lowest initial capitals, where
the constraint (6) is not active. The better results with growing initial capital are caused by im-
possibility to invest the whole capital. The redundant capital is used to recover after un-successful
operations. This principle is the same for the original task and the multi-participant formulation.

The comparison of the methods shows, that the multi-participants solution gives better results for
lower values of initial capital and then slowly grows with the capital. The original multi-dimensional
solution gives bad results for lower capital and then jumps to very good profit values and then the
success decreases. Overall, we can say that the multi-participants solution performance is compara-
ble with the optimal one.

The important aspect is also computing time. The complexity of the original task grows exponen-
tially and for dimension n = 3 one experiment with 3700 samples is calculated in terms of hours,
the same experiment with n = 5 is calculated about 1,5 day. To experimental testing there were 35
markets (n = 35) available. Therefore it is impossible to perform the optimization on all markets
together. Whereas, the complexity of the multi-participants solution grows linearly with the n. The
solution for n = 3 is computed in terms of seconds, for all 35 markets in terms of minutes. This
property makes the multi-participant solution more suitable despite its a bit worse performance.

5 Conclusion

The multi-market trading task was presented with the comment of an exponential grow of its com-
putational complexity. To avoid that, the multi-market trading is formulated as multi-participant
decision-making problem with participants sharing the common finite capital by the biding and ask-
ing. The proposed algorithm was described and the obtained results were compared with the results
of original multi-dimensional task. The comparison confirms the practical potential of the proposed
solution.

The multi-participant solution can be improved by redefining multi-participants and their commu-
nication. We have more algorithms than the used [6]. The difference is in used type of model [8],
prediction or optimization [9]. It can be interesting to compare the success participants working
at one market, where each participant uses another algorithm. Moreover, the sharing of the capital
between participants can be modified by adding the strategy of participant, which takes into account
the previous success of another participant before lending the redundant capital. This extension can
cause a deactivation of steady ineffective participants, whose only consume the money of successful
ones.

Gain Percent profit
C0 Original Participants Original Participants

10000 -5126 1153 -51,26% +11,53%
35000 -14914 4036 -42,61% +11,53%
60000 35295 6919 +58,83% +11,53%
85000 48576 11854 +57,15% +13,95%

110000 54738 19616 +49,76% +17,83%
135000 60479 31879 +44,80% +23,61%
160000 51748 38317 +32,34% +23,95%

Table 1: Comparing of methods: the gain obtained in USD.
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