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a b s t r a c t

Dynamic processes in astronomical observations are captured in various video sequences. The image
datacubes are represented by the datasets of random variables. Diagnostics of a fast developing event is
based on the specific behavior of the high-order moments (HOM) in time. The moment curves computed
in an image video sequence give valuable information about various phases of the phenomenon and
significant periods in the frequency analysis. The proposed method uses statistical moments of high and
very high orders to describe and investigate the dynamic process in progress. Since these moments are
highly correlated, the method of principal component analysis (PCA) has been suggested for following
frequency analysis. PCA can be used both for decorrelation of the moments and for determination of
the number of used moments. We experimentally illustrate performance of the method on simulated
data. A typical development of the dynamic phenomenon is modeled by the moment time curve. Then
applications to the real data sequences follow: solar active regions observed in the spectral line Hα
(wavelength 6563 Å—Ondřejov and Kanzelhöhe observatories) in two different angular resolutions. The
frequency analysis of the first few principal components showed common periods or quasi-periods of all
examined events and the periods specific for individual events. The detailed analysis of the moment’s
methodology can contribute to the observational mode settings. The method can be applied to video
sequences obtained by observing systems with various angular resolutions. It is robust to noise and it
can work with high range of sampling frequencies.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Many natural-science branches solve a common problem with
the processing of a video sequence to get valuable information
about the records. The ground-based and satellite astronomical
observations incorporate video sequences showing various types
of events: from stable scene up to the highly dynamic process. The
current methods of processing strongly depend not only on the
kind of data but also on the ongoing events in video sequences.
The image data (2D, 3D, etc.) are represented by the datasets of
random variables and from these modeled and/or observed data-
cubes information is obtained about the events in progress. The
dynamic process in astronomy can appear in different kinds of
observations, e.g. records of meteoric swarms, flashes of gamma
lighting [in seconds], solar flares and prominences [in minutes],
etc.
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To perform a valuable diagnostics of an event we have chosen
statistical moments. Moments are widely used in statistical
analysis. Generally they give information about the distribution
of data on various platforms. For practical use of moments in
statistics, see e.g. Dudewicz and Mishra (1988).

If we choose the moment as a characteristic, then we still have
a few options; we can consider the image itself to be a realization
of a random field and compute two-dimensional moments from
them. This approach is often used in the field of signal processing,
image analysis and pattern recognition, see Flusser et al. (2009).
Another option is to consider the image histogram as an estimate
of a probability density function. In this paper we have chosen
the latter one; we are interested in signal evolution in time and
this option enables a suitable way how to suppress the spatial
information. We still need to select the optimal order of the
moments.

Starting with basic statistical moments: the mean value m1 =

EX (firstmoment), the variancem2 = E(X−EX)2 (secondmoment)
and its square root S =


E(X − EX)2 (standard deviation), we

are approaching the high-order moments—skewness (third mo-
ment), and kurtosis (fourth moment). The moments m1, . . . ,m4
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were used e.g. in Leka and Barnes (2003a,b) to analyze physical pa-
rameters in active solar regions, the generalized spectral-kurtosis
estimator and its statistics is in Nita and Gary (2010a,b). Aharo-
nian et al. (2009) observed oscillations of a specific γ -ray source
in the Galactic Center region. They analyzed them by the statistical
moment-based Hillas technique (Hillas, 1985) based on the char-
acteristic ellipse, i.e. second-ordermoments. Rimoldini (2014) pro-
posed unbiased estimators of the weighted skewness and kurto-
sis moments, corrected for biases due to sample size and Gaussian
noise.

The dynamic phenomena in astronomical image processing
have been studied in various wavelengths. These events are often
observed and described by the means of a light curve, i.e. the
brightness of a specific pixel (or average brightness of some region)
as a function of time. In context of moments, the light curve equals
the first moment m1. The light curves in Hα were introduced
in Švestka and Simon (1969), but it was found they do not describe
the event with sufficient accuracy.

Recently, Salakhutdinova and Golovko (2004) observed so
called structure functions that enable deeper insight into the
physical phenomena in the Sun, but do not express the fine
details of the events. Nuño et al. (2008) observed fast events and
magnetoacoustic waves, Jackiewicz and Balasubramaniam (2013)
deal with regions both with flares and with oscillating filaments
and Jardins and Canfield (2003) observed preflare phenomenon
called moving blueshift events. All of them used Hα band, the last
one in combination with a spectrograph and X-ray band.

Li et al. (2005) were interested in one specific event (2002
July 15) in various bands: optical continuum, Hα, UV contin-
uum, microwave, soft X-rays and high-cadence longitudinal mag-
netograms. While the previous events are studied in the chro-
mosphere, De Moortel et al. (2002a,b) observed oscillations in
the corona, X-ray band. They found that loops situated above the
sunspot umbras show oscillations close to 3 min, whereas non-
sunspot loops (above plage regions) show oscillations close to
5 min. The flare-generated oscillations from the photosphere to
the corona are described in detail in De Pontieu et al. (2005).
Quasi-periodic pulsations are studied in Nakariakov and King
(2007), Nakariakov and Inglis (2009), Nakariakov et al. (2010). King
et al. (2003) observed quasi-periodic disturbances in extreme-
ultraviolet band (171 Å and 195 Å) with two ranges of periods:
2–3 min and 5–8 min. A detailed list of relevant references can be
found in Wang (2011). Data analysis has been based on the light
curves in the above-mentioned cases, while our approach is based
on the 3rd and higher moments.

Characteristics of the moments in the active regions during
solar flares were studied in Šimberová et al. (2014) and Šimberová
and Suk (2013). We found that the last two mentioned moments,
skewness and kurtosis, play an important role in the study of
this dynamic process. The unusual behavior of both moments
was observed by chance while studying development in various
areas on the solar disk in Hα images. While the first moment (the
light curve) and the second moment do not provide any relevant
information about the investigated area in time, the skewness and
kurtosis quite clearly andunambiguously identify a ‘‘turning point’’
in the observed dynamical event even with the accuracy to one
image plane. This turning point enables to determine the trigger
area of the flare,which is important for further image analysis. Now
we are able to specify the time sequence of the pre-flare phase and
to study physical conditions (magnetic field distribution, density
fluctuations, etc.) leading to the flare arising.

To automate the process of determining the start, it is necessary
to develop a special algorithm. Searching for the trigger area leads
to the turning point (i.e. the start of the increase) on a curve of
skewness with respect to time. The turning point can generally be
detected as maximum of second derivative. The skewness is (or
could be) noisy and we do not want to detect each local maximum
of the noise. Therefore, we have designed a special filter combining
Gaussian smoothing with the second derivative in Šimberová et al.
(2014). An automatic search for local maxima allows the division
of a dynamic event into time slots, in which we want to separately
perform further analysis, e.g. the time slot up to the turning point
enables detailed pre-flare analysis. Of course, we can analyze the
behavior of moments throughout the period of observation of the
dynamic phenomenon.

In this paper we are going to study, what moment or combi-
nation of moments is optimal for image analysis. We suppose the
samemethodology can be applied to other dynamically developed
phenomena in video sequences.

Our article is organized as follows: The next section covers the
introduction of statistical high-order moments and principal com-
ponents in image analysis, the 3rd section involves experiments
with real datasets and frequency analysis. Summary and results are
discussed in Conclusion.

2. The high-order moments and principal components in
image analysis

2.1. The statistical hypermoments

The high-order moments skewness m3 and kurtosis m4 are in
established notation

m3 = E(X − EX)3/S3, m4 = E(X − EX)4/S4, (1)

where EX is the mean value of random variable, S is standard
deviation and S2 is variance. Continuing for n > 4

mn = E(X − EX)n/Sn. (2)

The moment m5 is sometimes called hyperskewness and m6
hyperflatness.

On the other hand, there is also the zeroth-order moment m0,
called moment about origin. In our case it equals the area of the
histogram and the area of the observed region in pixels as well.

Increasing the order of moments it describes more and
more details of the histogram. Theoretically, in the case of a
continuous function, we can continue up to infinity. In the case
of digital image (discrete function), we have some finite L levels
of brightness (typically 27, or 28, 29, etc.), i.e. L bins of the
histogram. The moments m0, m1, m2, m3, m4, . . . ,mL−1 give
complete description of the histogram. It also means that there are
methods reconstructing the discrete function from the moments.

In practice, the finest details are just noise and the numerical
precision also decreases with the moment order. Therefore it is
useful to determine amaximummoment order s (much lower than
L) in a specific application. We use the limit s = 10 in this paper,
it has emerged from our experiments with reconstruction from
moments— (Flusser et al., 2009), Section 6.5.

The time curves of the high-order moments are also highly
correlated. This can be solved either in advance, by use of
some type of orthogonal moments, or subsequently, by principal
component analysis. Due to the difficulty and risk of the statistical
interpretation of orthogonal moments we decided for the latter
approach. The time curves ofm3,m4,m7 andm10 can be compared
in Fig. 1. It can be seen that the adjacent moments are highly
correlated, nonetheless, they bring new information.
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Fig. 1. Moments of the event O_031218—Ondřejov observatory. (a)m3 (skewness), (b)m4 (kurtosis), (c) m7 and (d) m10 .
Fig. 2. Feature space of the skewness (m3) and kurtosis (m4).

2.2. Principal component analysis

Principal component analysis (PCA) is themethodof data decor-
relation. It belongs to the set of classic statisticalmethods (Murtagh
and Heck, 1987). PCA is widely used in various fields of astron-
omy: for the analysis of spectra (e.g. Rees et al., 2000; Miller
et al., 2007; Parker et al., 2014), automated classification of spec-
tra (Bailer-Jones et al., 1998), systematic effect analysis in large
Fig. 3. Feature space of the principal components y1 and y2 computed from the
data in Fig. 2.

datasets (Tamuz et al., 2005), detection of exoplanets (Soummer
et al., 2012; Meshkat et al., 2014), etc.

Firstly, let us have two sequences of observations ai and bi,
i = 1, 2, . . . , n. We assume they are almost linearly dependent,
but not completely, i.e. their correlation is high, but less than one.
We would like to find out what both sequences have in common
and in what ways they are different. The natural way to do it is to
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Fig. 4. Principal components of moments of orders from 3 to 8 of the event O_031218—Ondřejov observatory. (a) First and second components, (b) third and fourth
components, (c) fifth and sixth components and (d) seventh and eighth components.
rotate the feature space (the values of ai are in one axis and bi in the
other axis) so that the data should have the maximum variance in
one axis and minimum in the second axis. It can be done by means
of covariance matrix. First, we center the data by subtracting the
time average

āi = ai −
1
n

n
i=1

ai, b̄i = bi −
1
n

n
i=1

bi, (3)

consequently the covariance matrix is

C =


n

i=1

ā2i
n

i=1

āib̄i

n
i=1

āib̄i
n

i=1

b̄2i

 . (4)

The eigenvectors of covariance matrix C define the rotation, its
eigenvalues define significance of the corresponding components.
More precisely, C is decomposed to C = PΛPT , where P is
the matrix of the eigenvectors and Λ is the diagonal matrix of
the eigenvalues sorted by values. When we assemble a matrix of
observations

XT
=


ā1 ā2 . . . āi . . . ān
b̄1 b̄2 . . . b̄i . . . b̄n


, (5)

then C = XTX and the principal components can be expressed as
Y = XP, (6)
where the element yij of matrix Y is the jth component of the ith
observation.

An example is shown in Fig. 2 with the feature space of the
moments m3 and m4. Using the scenario of moments in Fig. 1, the
eigenvalue corresponding to the first component is λ1 = 0.8594,
and the eigenvalue corresponding to the second component is
λ2 = 0.0016. Their high ratio λ1/λ2 = 525 corresponds with
high correlation between them (99.972%). The feature space of the
principal components is in Fig. 3. The graph in Fig. 3 has arisen from
the graph in Fig. 2 by translating the centroid to the coordinate
origin, rotating and strong stretching in the vertical direction. The
method approximates the data in Fig. 3 by a straight line that is
translated and rotated so it coincides with the x-axis.

If there are k observations (k > 2) in each point (or instant) i,
then covariance matrix C has a size k × k, matrices P and Λ have
the same size. The method decomposes the individual vectors into
the first component and the residuum projected to the subspace
perpendicular to the first eigenvector of C. Afterwards the initial
residuum is decomposed to the second component and another
residuum, etc., theoretically to infinity, practically until the kth
component. The number of the components equals the number of
input channels k.

3. Simulated data experiments

Prior to the real data applications, we tested our method on
the simulated fast event. The typical time moment curve of a
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Fig. 5. Typical flare time curve used for the third moment: (a) by itself, (b) with oscillations.
a b

Fig. 6. Third and fourth moments with noise: (a) normalized on the unit maximum, (b) amplitude Fourier spectra of the first two principal components.
developing solar flare is in Fig. 5(a). The model curve is patterned
on the real observation describing all important phases: inactive
state, pre-flare, turning point, developing area with its maximum
and post-flare. 588 samples with proposed distance 6 s represent
the total interval 58 min. We modeled similar curves for all eight
moments from m3 to m10, they differ mainly by the scaling of
values. The scaling according to the maximum values of individual
moment curves is: 2.67, 14.8, 82.7, 566, 4118, 3.29 · 104, 2.77 · 105

and 2.46 · 106 for the moments from m3 to m10, respectively.
Typically, two main parts of the moment curves have been
recognized: pre-flare up to the turning point (samples 1–341), and
eruptive phase with its maximum (samples 342–588).

Two sinusoidal signals were added, with periods 2min 55 s and
1 min 39 s (two typical frequencies occurring in the real data).
The one with the longer period has an amplitude of 2% of the
curve maximum, while the signal with the shorter period has an
amplitude of 65% of the first one. These values are valid in the pre-
flare phase, both curves have decreased in amplitude to 80% after
the turning point. The moment time curve with the oscillations is
in Fig. 5(b).

Finally, we need to take noise into consideration with the same
correlation betweenmoments in each pair as the natural signal. An
appropriate solution is in Vaughan and Andersen (2003). The task
is to generate a sequence of random variables ξ = [ξ1, ξ2, . . . , ξn]
with the given covariance matrix C and the vector of mean values
µ. The Cholesky decomposition of C to a lower triangle form τ so
C = ττT generating a sequence of independent random variables
with Gaussian distribution ζ = [ζ1, ζ2, . . . , ζn] with zero mean
value and unit standard deviation. The result can be obtained as
ξ = τζ + µ. (7)

Our approach is slightly modified. The correlation matrix of
the real data and its Cholesky decomposition is computed. Then
we generated the pseudo-random variables ζ for eight channels.
Using (7) the noise ξ is determined. Finally, it is multiplied by
the coefficient 2% of the corresponding moment curve maximum
and added to the generated moment curves (they serve as the
mean value µ here). It means the standard deviation of the noise
is the same as the amplitude of the sinusoidal signal with lower
frequency, the noise is very heavy, see Fig. 6(a).

Using the simulated sequences we computed the PCA and its
Fourier transformation. The eigenvalues of covariance matrix in
the PCA were 7.81, 1.41 · 10−1, 2.92 · 10−2, 1.18 · 10−2, 5.0 · 10−3,
6.78 · 10−4, 4.65 · 10−4 and 2.19 · 10−5. An example of the first
two components is in Fig. 6(b). The peaks corresponding to the two
added sinusoidal signals are clearly visible in all components. It
means the oscillations can be detected even in heavy noise with
the correct frequency.

4. Real data experiments

Besides the experiments with reconstruction of synthetic data,
see Flusser et al. (2009), and our experiments with artificial
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Fig. 7. Two examples of the different observed sequences: upper panel—
Kanzelhöhe observatory, bottom panel—Ondřejov observatory.

sequences, we applied our method to the time sequences from
real ground-based observations. There were six various events
used from two different solar telescopes observed in Hα line. Two
kinds of files differ in the size of their angular resolution, the full-
disk observation— Kanzelhöhe with resolution 1 pix = 1.02 ×

1.02 arcsec (two events) and detail observation—Ondřejov with
resolution 1 pix = 0.5 × 0.5 arcsec (four events), see Fig. 7.
Traditional digitization to 256 gray levels was applied. Examples of
the image datasets can be found on the web pages (Astronomical
Institute ASCR, 2014) and in Kanzelhöhe Observatory for Solar and
Environmental Research (2014).

The signal sampling is given by observational mode. It depends
on the phase of a dynamic event. We interpolated the signal
according to the highest sampling frequency, i.e. Ondřejov data 12
images/min, Kanzelhöhe data 10 images/min.

4.1. Principal component analysis

As an example the method has been applied to high resolution
data (event O_031218—Ondřejov observatory). Themutual depen-
dence of the data can be seen in Figs. 2 and 3. It is a proof of cor-
relation between moments m3 and m4. The eight moments from
m3 tom10 have been used in this experiment. Their dynamic range
dramatically increases, m3 has values from 1.13 to 2.05 while m10
from 1.08 · 104 to 6.89 · 105. It is a good reason to normalize the
moments by their standard deviations (known as a z-score)

m̄i(t) = mi(t)/

 1
n − 1

tn
t=t0


mi(t) −

1
n

tn
t=t0

mi(t)

2
 . (8)

Then PCA follows. The eigenvalues are 6.70, 1.28, 1.69 · 10−2,
8.40 · 10−4, 5.29 · 10−5, 7.35 · 10−7, 6.43 · 10−8 and 1.47 ·

10−9. The first component is an approximate average of the
moments. It can be understood as a typical shape of the moment
curve, it shows what is common for all the moments. The higher
components involve both positive and negative coefficients. The
second component shows a difference between very high-order
a

b

Fig. 8. Fourier spectrum of (a) the first component, (b) the second component.
The spectrum is non-traditionally expressed against period, not against frequency.
Legend: — O_031218 (black), — O_030319 (red), — O_030221 (green), — O_030212
(cyan), — K_110910 (blue) and — K_110307 (magenta).

moments from m7 to m10 and lower-order ones from m3 to m6.
The higher components also represent differences among the
moments.

The result – individual components – is in Fig. 4. To be able to
compare them,wehave divided the components by the square root
of the corresponding eigenvalue.

4.2. Frequency analysis

To contribute to the flare diagnostics we are interested in
the occurrence of certain oscillations in a sequence of active
region images. A good summary of their observations in various
wavelengths is inWang (2011), analysis in Hα is also in Šimberová
and Suk (2013).

The pre-flare phase of our sample case can be seen in Fig. 1 at
the beginning of the moment curves (samples from 8 to 53). The
basic mean of the frequency analysis is a Fourier transformation.
The amplitude spectrum of the first principal component from all
six investigated events is shown in Fig. 8(a).

The horizontal axis of the Fourier spectrum contains periods in
minutes instead of frequency. Then we can compare the periods of
the oscillations directly with the results published in other articles.
There were both two-minute oscillations (period between 1.5 and
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Table 1
Lengths and periods of the two most relevant maxima of the Fourier spectra of the first principal components.

Event O_031218 O_030319 O_030221 O_030212 K_110910 K_110307

Length 17 min 30 s 17 min 30 s 10 min 0 s 15 min 0 s 80 min 48 s 58 min 48 s
1st max. 2 min 42 s 3 min 22 s 1 min 6 s 2 min 56 s 3 min 0 s 2 min 36 s
2nd max. 1 min 44 s 1 min 34 s – 1 min 21 s 1 min 45 s 1 min 50s
a b

Fig. 9. Fourier spectrum of the first component—(a) detail of periods less than 1minute, (b) whole spectrum including all maxima. Legend: —O_031218 (black), — O_030319
(red), — O_030221 (green), — O_030212 (cyan), — K_110910 (blue) and — K_110307 (magenta).
a b

Fig. 10. Fourier spectrum of (a) the third-order moment, (b) the fourth-order moment. Legend: — O_031218 (black), — O_030319 (red), — O_030221 (green), — O_030212
(cyan), — K_110910 (blue) and — K_110307 (magenta).
2 min) and three-minute oscillations (period between 2 min 36 s
and 3 min 22 s) in five events: O_031218, O_030319, O_030212,
K_110910 and K_110307. The event O_030221 is not so typical, it
has only one maximum at 1 min 6 s. The events K_110910 and
K_110307 have additional maxima at 5 min 23 s. The maxima of
K_110307 are peculiarly double, there is a weaker maximum at 3
min 0 s beside 2 min 36 s and another weaker maximum at 1 min
58 s beside 1 min 50 s.

The results of all processed events are summarized in Table 1.
The three-minute and five-minute oscillations are in correspon-
dence with the results of De Moortel et al. (2002a,b), Wang (2011)
and King et al. (2003).

Other maxima are not so relevant—the shorter periods repre-
sent noise (see Fig. 9(a)) and the longer ones express the whole
length of the event (see Fig. 9(b)).

Comparison with the spectrum of the second principal compo-
nent is in Fig. 8(b). While the two-minute oscillations are roughly
similar, the three-minute maxima were shifted to four minutes
(excludingO_031218). Nevertheless, if the oscillations are only vis-
ible in the second component, it means they are only visible in
some moment curves. This is because they are not as important
as those of the first component.

Comparison with the spectrum of the third moment is in
Fig. 10(a) andwith the spectrumof the fourthmoment in Fig. 10(b).
The main difference from Fig. 8(a) is in the significance of some
maxima, particularly the event O_031218 has two significant
maxima at 1 min 44 s and at 3 min 20 s in the third moment
spectrum and also high value at 2 min 42 s. The last value is not
local maximum here, but it is the local maximum detected in all
higher moments. The value corresponding to 3 min 20 s is low in
all higher moments. Therefore PCA evaluated the maximum at 2
min 42 s as significant and that at 3 min 20 s as non-significant.

Additional less significant maxima can be seen in the spectra of
the third and fourth components in Fig. 11(a) and (b).
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ba

Fig. 11. Fourier spectrum of (a) the third component, (b) the fourth component. Legend: — O_031218 (black), — O_030319 (red), — O_030221 (green), — O_030212 (cyan),
— K_110910 (blue) and — K_110307 (magenta).
5. Conclusions

The statisticalmoments of high orders (HOMs) express the form
of a dynamic process. We developed methodology for the use of
HOMs computed from histograms in a video–image analysis and
we performed experiments with the real data video sequences—
solar flares observed in a Hα line. Development of a dynamic
phenomenon causes the changes in the histogram of individual
frames in a video sequence and the HOMs provide valuable
information about these changes.

The HOMs are highly correlated and it raises the question of
how many orders of moments are sufficient for the description
and analysis of the process. We proposed the PCA method for the
frequency analysis of the investigated event; it yields both the
decorrelated components for additional analysis and eigenvalues
of the covariance matrix for judgment of their significance. In the
decomposition of the signal to an ith component and a residuum,
the significance of the residuum depends on their correlation: the
higher the correlation, the less significant the residuum. To the best
of our knowledge the combination of these kind of moments with
PCA has not yet been used in this way.

The HOMs describe a dynamic process more precisely than
older methods using light curve analysis. Our method based
inventively on HOMs is not sensitive to angular resolution of the
video sequence, it canwork bothwith a specified area of thewhole
solar disk and with high resolution detail. Our approach is also
robust to noise—themoment represents an integral functional over
the region of interest, then the noise is removed by averaging
over this area. The robustness to noise was tested on simulated
data. This method can also work with a high range of sampling
frequencies. When the observational mode has been set to a
lower frequency of sampling, gaps can be filled by interpolation.
The undersampling often occurs when the active regions are just
searched and it is not clear whether the flare occurs at all. The real
data experiments have shown that interpolation does not violate
the lower frequencies.

The frequency analysis of the components by Fourier transfor-
mation can give information about various oscillations and quasi-
oscillations in the process. There are two limits in the frequency
analysis: the sampling frequency limits the minimal periods of the
analyzed oscillations, and the length of the sequence limits the
maximal periods. The optimal order of the moments strongly de-
pends on the dynamics of the phenomenon and on other properties
of recorded video sequence. Our experiments have shown it is suf-
ficient to compute the moments from the third to about the eighth
order and then to use the first two components (three components
atmaximum) fromPCA in the case of solar flare events. These num-
bers can differ in the case of other processes. This methodology is
suitable not only for solar flare analysis, but also for the investiga-
tion of other dynamic processes.
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