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SHAPE OPTIMIZATION IN THREE-DIMENSIONAL CONTACT
PROBLEMS WITH COULOMB FRICTION∗
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Abstract. We study the discretized problem of the shape optimization of three-dimensional
(3D) elastic bodies in unilateral contact. The aim is to extend existing results to the case of contact
problems obeying the Coulomb friction law. Mathematical modeling of the Coulomb friction problem
leads to an implicit variational inequality. It is shown that for small coefficients of friction the
discretized problem with Coulomb friction has a unique solution and that this solution is Lipschitzian
as a function of a control variable describing the shape of the elastic body. The 2D case of this
problem was studied by the authors in [P. Beremlijski, J. Haslinger, M. Kočvara, and J. V. Outrata,
SIAM J. Optim., 13 (2002), pp. 561–587]; there we used the so-called implicit programming approach
combined with the generalized differential calculus of Clarke. The extension of this technique to the
3D situation is by no means straightforward. The main source of difficulties is the nonpolyhedral
character of the second-order (Lorentz) cone, arising in the 3D model. To facilitate the computation
of the subgradient information, needed in the used numerical method, we exploit the substantially
richer generalized differential calculus of Mordukhovich. Numerical examples illustrate the efficiency
and reliability of the suggested approach.
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1. Introduction and preliminaries. Contact shape optimization is a special
branch of structural optimization whose goal is to find shapes of deformable bodies
which are in mutual contact. A typical problem in many applications is to find shapes
guaranteeing a priori given stress distributions on parts in contact [1]. A specific
feature of contact shape optimization is its nonsmooth character due to the fact that
the respective state mapping is given by various types of variational inequalities. For
contact problems without friction or with the so-called given friction (see [9]), whose
mathematical models lead to variational inequalities of the first and the second kind,
sensitivity analysis was done in [26] for continuous models and in [10] for discretized
models. Assuming a more realistic Coulomb law of friction, the situation becomes
much more complicated in view of the fact that the state problem is now represented
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by a nontrivial implicit variational inequality [6]. For the sake of simplicity we restrict
ourselves to structures consisting of one deformable body unilaterally supported by
a rigid foundation (the so-called Signorini problem) considering Coulomb friction on
a common part. The paper is solely devoted to a finite-dimensional case resulting
from an appropriate finite element approximation of our problem and, in particular,
to sensitivity analysis. The continuous setting, however, is also presented in order to
clarify the form of the resulting discrete model. Since our discrete design variables
are given by control points of Bézier surfaces shaping contact zones, we deal with the
classic boundary variation approach in shape optimization; i.e., topological changes
of the structure are not admitted.

The two-dimensional (2D) case of this problem was studied by the authors in [2];
there we used the so-called implicit programming approach [16, 21] combined with the
generalized differential calculus of Clarke [3]. One could definitely extend the approach
from [2] to the 3D case by using a polyhedral approximation of the friction cone. It is,
however, much more challenging to consider in the 3D model the right nonpolyhedral
second-order (Lorentz) cone, but then the respective extension of the technique from
[2] meets serious hurdles. This concerns both the numerical solution of the respective
state problem as well as appropriate stability and sensitivity issues. To facilitate the
computation of the subgradient information, needed in the used numerical method, we
have thus invoked the results of [13] and exploited the substantially richer generalized
differential calculus of Mordukhovich [17, 19]. This means that we compute now a
matrix from the Clarke generalized Jacobian of the discretized state mapping via the
limiting (Mordukhovich) coderivative of this mapping. This has enabled us to have
an efficient treatment of coupled multifunctions arising on the right-hand side of the
generalized equation defining the state mapping.

The outline of the paper is as follows. Section 2 is devoted to a brief description
of the state problem, i.e., the contact problem with Coulomb friction in its original,
infinite-dimensional formulation. In section 3 we describe its finite element discretiza-
tion and introduce our shape optimization problem. Thereafter we present various
properties of the discretized state mapping and end up with the proof of its strong
regularity. Section 4 concerns the used implicit-programming method. In particular,
it deals with the computation of Clarke’s subgradients of the respective composite cost
function which have to be supplied to the used algorithm of nonsmooth optimization.
In this section we make use of several sophisticated rules of generalized differentiation.
The first part of the last section 5 is devoted to the numerical solution of the state
problem. In the second part we present the test examples.

Our notation is standard: Ā denotes the closure of a set A and, for a multifunction
Φ : X ⇒ Y, GrΦ = {(x, y) ∈ X × Y | y ∈ Φ(x)} is the graph of Φ. BR denotes a
ball in R

n of radius R centered at the origin. For a vector x ∈ R
n and an index set

N ⊂ {1, 2, . . . , n}, xN denotes the subvector of x composed from the components xi,
i ∈ N . For a Lipschitz single-valued mapping F : R

n → R
m, ∂̄F (x) is the generalized

Jacobian of Clarke, defined by

∂̄F (x) = conv
{

lim
i→∞

∇F (xi) | xi
ΩF→ x

}
,

where “conv” denotes the convex hull and ΩF is the set of points at which F is
differentiable. If m = 1, we speak of the Clarke subdifferential.

In section 4 we extensively use the following notions of the generalized differential
calculus of Mordukhovich [18, 19].
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Given a closed set A ⊂ R
n and a point x̄ ∈ A, we denote by N̂A(x̄) the Fréchet

(regular) normal cone to A at x̄, defined by

N̂A(x) =

{
x∗ ∈ R

n | lim sup
x

A−→x

〈x∗, x − x〉
‖x − x‖ ≤ 0

}
.

The limiting (Mordukhovich) normal cone to A at x, denoted by NA(x), is defined by

NA(x) := Lim sup
x

A−→x

N̂A(x) ,

where “Lim sup” is the Kuratowski–Painlevé outer limit of sets (see [24]). If A is
convex, then NA(x) = N̂A(x) amounts to the classic normal cone in the sense of
convex analysis. We say that A is normally regular at x̄, provided NA(x̄) = N̂A(x̄).

On the basis of the above notions, we can also describe the local behavior of
multifunctions. Let Φ : R

n ⇒ R
m be a multifunction with closed graph and (x, y) ∈

Gr Φ. The multifunction D̂∗Φ(x, y) : R
m ⇒ R

n, defined by

D̂∗Φ(x, y)(y∗) := {x∗ ∈ R
n | (x∗,−y∗) ∈ N̂Gr Φ(x, y)},

is called the regular coderivative of Φ at (x, y). Analogously, the multifunction
D∗Φ(x, y) : R

m ⇒ R
n, defined by

D∗Φ(x, y)(y∗) := {x∗ ∈ R
n | (x∗,−y∗) ∈ NGr Φ(x, y)},

is called the limiting (Mordukhovich) coderivative of Φ at (x, y). These two coderiva-
tives coincide whenever GrΦ is normally regular at (x̄, ȳ). If Φ happens to be single-
valued, we simply write D̂∗Φ(x)(D∗Φ(x)). If Φ is continuously differentiable, then
D̂∗Φ(x) = D∗Φ(x) amounts to the adjoint Jacobian.

In what follows the considered discretized mechanical equilibrium is modeled by
a generalized equation (GE) of the form

(1.1) 0 ∈ G(x, y) + Q(y),

where G[Rn ×R
m → R

m] is continuously differentiable and Q[Rm ⇒ R
m] is a closed-

graph multifunction. Consider the reference pair (x̄, ȳ) ∈ GrS, where S[Rn ⇒ R
m] is

defined by

S(x) = {y ∈ R
m|0 ∈ G(x, y) + Q(y)}.

In agreement with a slight generalization [4] of Robinson’s concept of strong regularity
from [23] we say that the GE (1.1) satisfies the strong regularity condition (SRC) at
(x̄, ȳ) (is strongly regular at (x̄, ȳ)), provided there exist neighborhoods U of 0 and V
of ȳ such that the mapping

v 
→ {y ∈ V|v ∈ G(x̄, ȳ) + ∇yG(x̄, ȳ)(y − ȳ) + Q(y)}
is single-valued and Lipschitz on U . It is well known ([4, Theorem 2.1]) that the strong
regularity of (1.1) at (x̄, ȳ) implies the existence of neighborhoods Ũ of x̄ and Ṽ of ȳ
such that the mapping

x 
→ S(x) ∩ Ṽ
is single-valued and Lipschitz on Ũ .
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2. Setting of the problem. We start with the definition of the state problem.
Let Ω̂ = R× (0, c), R = (0, a) × (0, b), be a block in R

3, a, b, c > 0 given. By Uad we
denote a family of admissible functions, where

(2.1) Uad =
{

α ∈ C0,1
(R̄) | 0 ≤ α ≤ C0 in R̄, ‖α′‖∞,R ≤ C1,

C2 ≤
∫
R

α dx1dx2 ≤ C3

}
;

i.e., the set Uad contains all nonnegative, bounded, Lipschitz equicontinuous functions
in R̄, satisfying an integral type constraint. Positive numbers C0, C1, C2, and C3 are
chosen in such a way that Uad �= ∅. With any α ∈ Uad we associate a subdomain
Ω(α) ⊂ Ω̂:

Ω(α) = {(x1, x2, x3) ∈ Ω̂ | x3 ≥ α(x1, x2) ∀(x1, x2) ∈ R}.

Functions α ∈ Uad will play the role of control variables determining the shape of
Ω(α).

Let α ∈ Uad be fixed, and consider an elastic body represented by Ω(α). Its
boundary ∂Ω(α) is split into three nonempty, nonoverlapping parts Γu(α), Γp(α),
and Γc(α): ∂Ω(α) = Γ̄u(α) ∪ Γ̄p(α) ∪ Γ̄c(α), where different boundary conditions
will be prescribed. On Γu(α) the body is fixed, while surface tractions of density
P = (P1, P2, P3) act on Γp(α). The body is unilaterally supported along Γc(α) by a
rigid foundation represented by the half-space R

2 × R−, where

Γc(α) = {(x1, x2, x3) | x3 = α(x1, x2) ∀(x1, x2) ∈ R}

is the graph of α. Finally, Ω(α) is subject to body forces of density F = (F1, F2, F3).
Our aim is to find an equilibrium state taking into account friction on Γc(α). This
state is characterized by a displacement field u = (u1, u2, u3) satisfying the following
system of differential equations and boundary conditions:

- equilibrium equations:

(2.2)
∂σij

∂xj
+ Fi = 0 in Ω(α), i = 1, 2, 3;1

- Hooke’s law :

(2.3) σij : = σij(u) = cijklεkl(u) in Ω(α), where εkl =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
,

i, j, k, l = 1, 2, 3;

- kinematical boundary conditions :

(2.4) ui = 0 on Γu(α), i = 1, 2, 3;

- prescribed tractions :

(2.5) Ti : = σijνj = Pi on Γp(α), i = 1, 2, 3;

1Here and in what follows the summation convention is adopted.
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- unilateral conditions :

(2.6)
u3(x′, α(x′)) ≥ −α(x′) ∀x′ = (x1, x2) ∈ R;
T3(x) : = σ33(x) ≥ 0, T3(x)(u3(x) + α(x′)) = 0 ∀x ∈ Γc(α);

}

- Coulomb law of friction:

(2.7)

if ut(x) : = (u1(x), u2(x), 0) = 0 ⇒ ‖Tt(x)‖ ≤ FT3(x),
where Tt(x) : = (T1(x), T2(x), 0), x ∈ Γc(α);

if ut(x) �= 0 ⇒ Tt(x) = −FT3(x)
ut(x)

‖ut(x)‖ , x ∈ Γc(α).

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Remark 2.1. The equations and boundary conditions (2.2)–(2.7) represent the

classical formulation of a contact problem with Coulomb friction. The meaning of
symbols is the following: σ = (σij)3i,j=1 stands for a symmetric stress tensor which is
related to a linearized strain tensor ε = (εij)3i,j=1 by means of a linear Hooke’s law
(2.3), ν is the unit outward normal vector to ∂Ω(α), and T = (T1, T2, T3) denotes the
stress vector on ∂Ω(α). Finally, ‖ ‖ is the Euclidean norm of a vector and F is a
coefficient of Coulomb friction. In what follows we shall suppose that F is a positive
constant.

To give a weak form of the state problem we introduce the following spaces and
sets:

V (α) = {v = (v1, v2, v3) ∈ (H1(Ω(α)))3 | v = 0 on Γu(α)},
K(α) = {v ∈ V (α) | v3(x′, α(x′)) ≥ −α(x′) a.e. in R},

X = {ϕ ∈ L2(R) | ∃v ∈ V (α) : ϕ(x′) = v3(x′, α(x′)), x′ ∈ R},
X ′ is the dual of X, X ′

+ is the cone of positive elements of X ′.

The duality pairing between X ′ and X will be denoted by 〈·, ·〉.
We start with a simpler model of friction in which the unknown component T3

in (2.7) is replaced by a given slip bound g ∈ X ′
+ (model with given friction; see [9]).

Its mathematical formulation leads to a variational inequality of the 2nd kind:

(P(g))
Find u : = u(g) ∈ K(α) such that

aα(u, v − u) + 〈Fg, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) ∀v ∈ K(α),

}

where

(2.8) aα(u, v) : =
∫

Ω(α)

cijklεij(u)εkl(v) dx,

(2.9) Lα(v) : =
∫

Ω(α)

Fivi dx +
∫

Γp(α)

Pivi ds

are the inner energy and the work of external forces, respectively. Further, ‖v̂t‖ de-
notes the Euclidean norm of the vector v̂t : = vt ◦ α given by (v1(x′, α(x′)),
v2(x′, α(x′)), 0), x′ ∈ R. Next we shall suppose that F ∈ (L2(Ω̂))3, P ∈ (L2(∂Ω̂))3,
and the linear elasticity coefficients cijkl in (2.3) satisfy the usual symmetry and ellip-
ticity conditions [20]. It is well-known that under these assumptions problem (P(g))
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has a unique solution u(g) for every g ∈ X ′
+. To release the unilateral constraint

u(g) ∈ K(α) we use an alternative formulation of (P(g)) involving Lagrange multi-
pliers:

(M(g))
Find (u, λ) : = (u(g), λ(g)) ∈ V (α) × X ′

+ such that
aα(u, v − u) + 〈Fg, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) + 〈λ, v̂3 − û3〉 ∀v ∈ V (α)
〈μ − λ, û3 + α〉 ≥ 0 ∀μ ∈ X ′

+,

⎫⎪⎬⎪⎭
where v̂3(x′) : = v3(x′, α(x′)), x′ ∈ R. It is easy to show that problem (M(g)) has
a unique solution (u(g), λ(g)) for every g ∈ X ′

+. This makes it possible to define a
mapping Φ : X ′

+ 
−→ X ′
+ by

(2.10) Φ(g) = λ(g) ∀g ∈ X ′
+,

where λ(g) ∈ X ′
+ is the second component of the solution to (M(g)).

Definition 2.2. By a weak solution of a contact problem with Coulomb friction
we call any pair (u, λ) ∈ V (α) × X ′

+ satisfying

(Q(α))
aα(u, v − u) + 〈Fλ, ‖v̂t‖ − ‖ût‖〉 ≥ Lα(v − u) + 〈λ, v̂3 − û3〉 ∀v ∈ V (α)
〈μ − λ, û3 + α〉 ≥ 0 ∀μ ∈ X ′

+.

}
From this definition it follows that λ is a fixed point of Φ. The existence of such

fixed points has been analyzed in [6].
So far the function α ∈ Uad characterizing the shape of Ω(α) has been fixed. Now

we shall look at α ∈ Uad as a control variable governing state problem (Q(α)). Let S
be the respective control-to-state mapping defined by

(2.11) S(α) = (u(α), λ(α)) ∀α ∈ Uad,

where (u(α), λ(α)) is a solution to (Q(α)), and denote by G the graph of S. Since
(Q(α)) may have more than one solution, the mapping S is set-valued in general.

Finally, let J : G 
−→ R
1 be a cost functional. Suppose that there exists a

minimizer (α∗, u(α∗), λ(α∗)) of J on G. Then Ω∗ : = Ω(α∗) will be called an op-
timal domain. Since we are interested in numerical realization of this problem, its
discretization will be necessary.

To discretize the geometry we introduce a system Uh
ad containing functions which

are uniquely determined by a finite number of degrees of freedom (e.g., Bézier sur-
faces). Admissible domains will be then given by Ω(αh), where αh ∈ Uh

ad. To dis-
cretize the state problem we use a finite element method. The classical Galerkin
method together with appropriate discretizations Vh(αh), Kh(αh), and Xh and X ′

h

of V (α), K(α), and X and X ′, respectively, represent an efficient tool of solving
frictional contact problems. Analogously to the continuous setting we introduce a
discrete control-to-state mapping Sh defined on Uh

ad and its graph Gh. The discrete
shape optimization is then given by the minimization of J on Gh. In the next section
we present an algebraic form of this problem arising from a typical finite element
approximation. From this the structure of the problem to be solved will be seen.

3. Algebraic form of contact problems with Coulomb friction. The aim
of this section is to present the algebraic form of the discretized state problem and to
analyze its basic properties. We will proceed analogously to the continuous setting.

Let the discretization parameter h > 0 be fixed. Next we shall use the following
notation: ‖ · ‖s, 〈 ·, · 〉s stand for the Euclidean norm and the scalar product in R

s,
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respectively. In the frequent case s = 2 the subscript will be omitted. Every αh ∈ Uh
ad

will be uniquely characterized by a discrete design variable α ∈ R
d, and Uh

ad will be
identified with a set U ⊂ R

d. We shall suppose that U is a convex, compact subset of
R

d. Let {ϕi}n
i=1 be a basis of a finite element space Vh(αh), αh ∈ Uh

ad, and suppose
that its dimension n does not depend on αh. Then

aαh
(vh, zh) = 〈A(α)v , z 〉n,

Lαh
(vh) = 〈L(α), v〉n ∀vh, zh ∈ Vh(αh),

where v ∈ R
n is the vector of coordinates of vh with respect to {ϕi}n

i=1 and A(α) ∈
R

n×n, L(α) ∈ R
n are a stiffness matrix and a load vector, respectively, both depending

on α ∈ U . The set of all A(α) ∈ R
n×n, α ∈ U , will be denoted by M . For the sake

of consistency we will denote in what follows all finite-dimensional vectors and all
matrices by bold letters. At mappings, however, this convention will not be applied
strictly, and so most vector-valued and set-valued mappings are denoted by standard
(nonbold) letters. We shall suppose that the following assumptions are satisfied:

All matrices A ∈ M are symmetric and uniformly positive definite, i.e.,
there exists γ > 0 such that 〈Av , v〉n ≥ γ‖v‖2

n ∀v ∈ R
n ∀A ∈ M ;

}
(3.1)

The mappings A : U 
−→ M,L : U 
−→ R
n are continuously

differentiable on an open set containing U .

}
(3.2)

We start with the algebraic form of the contact problem with given friction for
fixed α ∈ U . Let g ∈ R

p
+ (p < n) be a given discrete slip bound (p is related to the

number of all contact nodes, i.e., the nodes of a used partition of Ω̄(αh) into finite
elements which are placed on Γ̄c(αh)\ Γ̄u(αh)). The discretized total potential energy
has the following form:

(3.3) J (v ) =
1
2
〈v ,Av〉n − 〈L, v〉n + F〈g , |Tv|〉p,

with A : = A(α), L : = L(α) for some α ∈ U (since α ∈ U is now fixed, it will be
omitted in the argument of A and L). Further, T : R

n 
−→ R
2p is a linear mapping

defined by Tv : = (T1v , T2v , . . . , Tpv), v ∈ R
n, where Tiv ∈ R

2 is the tangential
nodal displacement vector at the ith contact node. The symbol |Tv| ∈ R

p denotes a
vector defined by

|Tv | : = (‖T1v‖, . . . , ‖Tpv‖) .

Let K be a closed convex subset of R
n:

(3.4) K := {v ∈ R
n | Nv ≥ −α},

where N ∈ R
p×n is a matrix representation of the nonpenetration property. From

a displacement vector v ∈ R
n, N selects the normal components at the p contact

points. Clearly, N has the following properties:
(a) It has full row rank.
(b) Each column contains at most one nonzero element.
(c) N (Rn) = N (kerT ).

From (a) it follows that

(3.5) ∃β = const. > 0 such that sup
v∈R

n

v �=0

〈μ,Nv〉p
‖v‖n

≥ β‖μ‖p ∀μ ∈ R
p.
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Definition 3.1. By a solution of a discrete contact problem with given friction
we mean a vector u ∈ K satisfying

(P (L, g)) 〈Au, v− u〉n + F〈g, |Tv| − |Tu|〉p ≥ 〈L, v− u〉n ∀v ∈ K.

Next we will analyze the dependence of u on L and g with α ∈ U being fixed.
This is why we use notation (P (L, g)).

To conduct this analysis, we introduce an equivalent formulation of (P (L, g))
which involves Lagrange multipliers releasing the constraint v ∈ K. It reads as follows:

(M (L, g))

Find (u , λ) ∈ R
n × R

p
+ such that

〈Au , v − u〉n + F〈g , |Tv | − |Tu|〉p
≥ 〈L, v − u〉n + 〈λ,Nv −Nu〉p ∀v ∈ R

n

〈μ− λ,Nu + α〉p ≥ 0 ∀μ ∈ R
p
+.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The first component u of the solution to (M (L, g)) solves (P (L, g)), and the second
component λ represents the discrete normal contact stress. The following result is
easy to prove.

Proposition 3.2. Problems (P (L, g)), (M (L, g)) have unique solutions u,
(u, λ), respectively, for every L ∈ R

n and g ∈ R
p
+.

Proof. Both existence and uniqueness follow directly from (3.1) and (3.5).
Next we will establish several useful properties of the solution to (M (L, g)).
Proposition 3.3. Let (u, λ) be the solution to (M (L, g)). Then

(3.6) ‖u‖n ≤ 1
γ
‖L‖n,

(3.7) ‖λ‖m ≤ 1
β

(‖A‖
γ

+ 1
)
‖L‖n,

where γ, β > 0 are from (3.1) and (3.5).
Proof. Inserting v = 0 ∈ K into (P (L, g)) we obtain

γ‖u‖2
n ≤ 〈Au ,u〉n + F〈g , |Tu|〉p ≤ 〈L,u〉n

from which (3.6) follows. Further, substitutions v = 0 and v = 2u into the first
inequality in (M (L, g)) yield

〈Au ,u〉n + F〈g , |Tu|〉p = 〈L,u〉n + 〈λ,Nu〉p.
Therefore,

(3.8) 〈Au , v 〉n + F〈g , |Tv |〉p ≥ 〈L, v〉n + 〈λ,Nv〉p ∀v ∈ R
n.

From (3.8) it follows that

(3.9) 〈Au , v〉n = 〈L, v〉n + 〈λ,Nv〉p ∀v ∈ kerT.

From this and (3.5) we obtain (3.7) using that N (Rn) = N (kerT ).
Remark 3.4. It is worth noticing that the bounds (3.6) and (3.7) do not depend

on F > 0 and g ∈ R
p
+.

Assume now that g is fixed, and let Ψ : R
n 
−→ K×R

p
+ be a mapping defined by

Ψ(L) = (u , λ),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

424 BEREMLIJSKI, HASLINGER, KOČVARA, KUČERA, OUTRATA

where (u , λ) is a solution of (M (L, g)). It is very easy to show that Ψ is Lipschitz
on R

n as follows from the next proposition.
Proposition 3.5. Let (ui, λi) be the solution of (M (Li, g)), i = 1, 2. Then

(3.10) ‖u1 − u2‖n ≤ 1
γ
‖L1 − L2‖n,

(3.11) ‖λ1 − λ2‖p ≤ 1
β

(‖A‖
γ

+ 1
)
‖L1 − L2‖n.

Proof. The proof can be done in the same way as the proof of Proposi-
tion 3.3.

Next, to define a solution of a discrete contact problem with Coulomb friction,
we fix L and introduce the mapping Γ : R

p
+ 
−→ R

p
+:

(3.12) Γ(g ) = λ,

where λ is the second component of a solution to (M (L, g)).
Definition 3.6. As a solution of a discrete contact problem with Coulomb fric-

tion we declare any couple (u, λ) ∈ R
n × R

p
+ satisfying

(P)
〈Au, v− u〉n + F〈λ, |Tv| − |Tu|〉p

≥ 〈L, v− u〉n + 〈λ,Nv−Nu〉p ∀v ∈ R
n

〈μ− λ,Nu + α〉p ≥ 0 ∀μ ∈ R
p
+;

⎫⎪⎬⎪⎭
i.e., λ is a fixed point of Γ and (u, λ) solves (M (L, λ)).

Proposition 3.7. For any L ∈ R
n and any F > 0 there exists at least one fixed

point λ of Γ. All fixed points λ belong to R
p
+ ∩ BR, where R = 1

β (‖A‖
γ + 1)‖L‖n.

Proof. It is easy to show that Γ is continuous in R
p
+ and maps R

p
+ ∩BR into itself

as follows from (3.7). The existence of a fixed point follows from Brower’s fixed point
theorem.

Now we show that Γ is even contractive in R
p
+ ∩ BR, provided that F is small

enough. Indeed, denote by u i ∈ K solutions to (P (L, g i)), i = 1, 2. Then one has

(3.13)i 〈Au i, v − u i〉n + F〈g i, |Tv | − |Tu i|〉p ≥ 〈L, v − u i〉n ∀v ∈ K.

Inserting v : = u2 into (3.13)1 and v : = u1 into (3.13)2 and summing up these
inequalities we obtain

(3.14) ‖u1 − u2‖n ≤ F
γ
‖T ‖‖g1 − g2‖p.

From (3.9) we know that

〈Au i, v〉n = 〈L, v〉n + 〈λi,Nv〉p ∀v ∈ kerT.

Hence,

(3.15) ‖λ1 − λ2‖p ≤ 1
β

F
γ
‖A‖‖T ‖‖g1 − g2‖p.

In this way we obtain the following theorem.
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Theorem 3.8. Let

(3.16) 0 < F <
βγ

‖A‖‖T ‖ .

Then Γ defined by (3.12) is contractive in R
p
+∩BR so that the discrete contact problem

with Coulomb friction has a unique solution.
Corollary 3.9. Let (3.16) be satisfied. Then the method of successive approxi-

mations

λ(0) ∈ R
p
+ given;

for k = 0, 1, . . . , set λ(k+1) = Γ(λ(k)) until a stopping criterion is fulfilled

is convergent to the unique fixed point of Γ for any choice of λ(0) ∈ R
p
+.

Indeed, it follows from Proposition 3.3 that λ(1) ∈ BR independent of the starting
value λ(0).

Remark 3.10. Let us notice that the bound (3.16) does not depend on L ∈ R
n

and it can be also chosen to be independent of α ∈ U as follows from (3.1); i.e., there
exists an F0 > 0 such that for any (F ,L, α) ∈ (0,F0)×R

n ×U there is a unique fixed
point λ of Γ.

Let α ∈ U be fixed, F ∈ (0,F0), and (u , λ) be the unique solution of the contact
problem with Coulomb friction in the sense of Definition 3.6. Now we shall consider
the couple (u , λ) : = (u(L), λ(L)) to be a function of the load vector L ∈ R

n. We
define the mapping SL : R

n 
−→ K × R
p
+ by

SL(L) = (u(L), λ(L)) ∀L ∈ R
n.

An easy consequence of (3.11) and (3.14) is the fact that SL is Lipschitz on R
n

uniformly with respect to α ∈ U .
Proposition 3.11. Let F ∈ (0,F0). Then there exists δ > 0 such that the

inequality

‖SL(L1) − SL(L2)‖n+p ≤ δ‖L1 − L2‖n

holds for all L1,L2 ∈ R
n and all α ∈ U .

So far, α ∈ U has been fixed. Next we will look at α as a control variable
parameterizing our state problem. We denote by S the control-to-state mapping which
assigns α ∈ R

d the solutions (u , λ) of the contact problem with Coulomb friction in
the sense of Definition 3.6. We know that S(α) is nonempty for all α ∈ U and a
singleton if F ∈ (0,F0). Let J : GrS 
−→ R be an objective function.

The discrete optimal shape design problem reads as follows:

(P)
Find z ∗ := (α∗,u∗, λ∗) ∈ Gr S such that

J(z ∗) ≤ J(z ) ∀z ∈ GrS.

}

If F ∈ (0,F0), then S is single-valued and (P) takes the form

(P̃)
find α∗ ∈ U such that

Θ(α∗) ≤ Θ(α) ∀α ∈ U ,

}

where Θ(α) : = J(α, S(α)). The following existence result is easy to prove.
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Theorem 3.12. Let J be lower semicontinuous on Gr S. Then (P) has a solu-
tion.

Proof. It is readily seen that Gr S is a compact subset of R
d × R

n × R
m.

From now on we will suppose that F ∈ (0,F0). Our main aim is to show that the
single-valued function S is Lipschitz on U . We start with a reduction of the problem
by eliminating all components of u ∈ R

n associated with the noncontact nodes of the
finite element partition of Ω̄(αh). The resulting problem contains only the tangential
components u t ∈ R

2p and the normal components uν ∈ R
p of u at p contact nodes.

In the next step we transform this reduced problem into the following GE for the
unknowns ut, uν , and λ (for details see section 3 in [2]):

(3.17)

0 ∈ Att(α)u t + Atν(α)uν − Lt(α) + Qt(ut, λ)
0 = Aνt(α)u t + Aνν(α)uν − Lν(α) − λ

0 ∈ uν + α + NR
p
+
(λ),

⎫⎪⎬⎪⎭
where Att(α) ∈ R

2p×2p, Aνν(α) ∈ R
p×p, Aνt(α) ∈ R

p×2p, Atν(α) = AT
νt(α),

Lt(α) ∈ R
2p, and Lν(α) ∈ R

p.
In (3.17) NR

p
+
(·) is the normal cone mapping in the sense of convex analysis and

Qt : R
2p × R

p 
−→ R
2p is the set-valued mapping defined by

Qt(ut, λ) = ∂utj(u t, λ), j(ut, λ) = F
p∑

i=1

λi

∥∥u i
t

∥∥ ,

with u i
t ∈ R

2 being the tangential displacement at the ith contact node, ut =(
u1

t , . . . ,u
p
t

)
. Problem (3.17) can be written in a more compact form:

(3.18) 0 ∈ F (α)y − l(α) + Q(y),

where y = (u t,uν , λ) and

F (α) =

⎡⎣Att(α) Atν(α) 0
Aνt(α) Aνν(α) −E

0 E 0

⎤⎦ ,

l(α) = (Lt(α),Lν(α),−α)T ,

Q(y) =
(
Qt(ut, λ),0, NR

p
+
(λ)

)T

,

with E being the identity matrix.
In the rest of this section we prove that the GE (3.18) satisfies the SRC at

(α, y(α)) for any α ∈ U , where y(α) is the unique solution of (3.18). Let (ᾱ, ȳ)
be a reference point. We associate with (3.18) the following perturbed model at
(ᾱ, ȳ):

(3.19) ξ ∈ F (ᾱ)y − l(ᾱ) + Q(y),

where ξ = (ξt, ξν , ξλ) ∈ R
2p ×R

p ×R
p is a canonical perturbation. This problem can

be again interpreted as a contact problem with Coulomb friction with a variable load
vector depending on ξ but formulated on a given shape specified by ᾱ ∈ U . Indeed,
(3.19) is equivalent to

(3.20)

0 ∈ Att(ᾱ)u t + Atν(ᾱ)uν − Lt(ᾱ) − ξt + Qt(ut, λ)
0 = Aνt(ᾱ)u t + Aνν(ᾱ)uν − Lν(ᾱ) − ξν − λ

0 ∈ uν + ᾱ + ξλ + NR
p
+
(λ).

⎫⎪⎬⎪⎭
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The last inclusion in (3.20) corresponds to the nonpenetration condition uν ≥ −ᾱ−
ξλ. Denote by ξ̃λ = (0, ξλ) ∈ R

2p the extension of ξλ by the zero vector, and write
ũ = (u t,uν) in the form

(3.21) ũ = w − ξ̃λ,

i.e., ut = w t and uν = wν − ξλ, where wν ≥ −ᾱ. Inserting (3.21) into (3.20) we
obtain a new problem for the vector w : = w(ξ):

(3.22)

0 ∈ Att(ᾱ)w t + Atν(ᾱ)wν − F t(ξ) + Qt(w t, λ)
0 = Aνt(ᾱ)w t + Aνν(ᾱ)w ν − F ν(ξ) − λ

0 ∈ wν + NR
p
+
(λ),

⎫⎪⎬⎪⎭
where

F t(ξ) :=Lt(ᾱ) + ξt + Atν(ᾱ)ξλ,

F ν(ξ) :=Lν(ᾱ) + ξν + Aνν(ᾱ)ξλ

represent a perturbation of the original load vector depending on ξ. From Remark 3.4
we know that there exists a unique solution of (3.22) for any ξ, and Proposition 3.11
says that this solution as a function of load vectors is Lipschitz on R

n. Hence, we
obtain the following result.

Theorem 3.13. Let F ∈ (0,F0) with F0 > 0 sufficiently small. Then the
respective GE (3.18) is strongly regular at each triple (α,u, λ) with α ∈ U and (u, λ) =
S(α). Consequently, the control-to-state mapping S is Lipschitz on U .

Proof. The proof follows from Theorem 2.1 in [4].
On the basis of the results of this section the Lipschitz continuity of S could be

proved in a direct way, without using the mentioned Robinson’s result. The strong
regularity of (3.18) will play, however, an important role in the next section.

4. Implicit programming approach and sensitivity analysis. In this sec-
tion the scalar product in R

n will be denoted by 〈·, ·〉 without any subscript related
to the dimension, {0}k means the zero vector in R

k, and B stands for the unit ball.
Consider the problem (P̃), and assume that the objective J is continuously differen-
tiable. By virtue of the assumptions and Theorem 3.13, Θ is locally Lipschitz on an
open set containing U . It follows that (P̃) can be solved by a suitable bundle method
of nondifferentiable optimization, provided the structure of U is not too complicated.
To this end we have to be able to compute for each admissible design variable ᾱ

(i) the solution ȳ = S(ᾱ) of the respective contact problem and
(ii) an arbitrary subgradient ξ from the Clarke subdifferential ∂̄Θ(ᾱ).

This section is devoted to task (ii). We start with the observation that

∂̄Θ(ᾱ) = ∇αJ(ᾱ, ȳ) + {CT∇yJ(ᾱ, ȳ) | C ∈ ∂̄S(ᾱ)}
which follows directly from the chain rule in [3, Theorem 2.6.6]. Because of Lipschitz
continuity of S one has from [17, Corollary 3.3.2] that D∗S(ᾱ)(y∗) �= ∅ for all y∗ and
from [18, formula (2.23)] that

conv (D∗S(ᾱ))(y∗) = (∂̄S(ᾱ))∗y∗.

Thus, it suffices for our purposes to compute just one element from the set

D∗S(ᾱ)(∇yJ(ᾱ, ȳ)),
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and we are done. To be able to express the coderivative D∗S(ᾱ) in terms of the data
of the GE (3.18), we reorder this GE in such a way that the multivalued part

Q(y) =

⎡⎢⎢⎢⎣
Φ(y1)
Φ(y2)

...
Φ(yp)

⎤⎥⎥⎥⎦ ,

where the subvector yi = (u i
t, u

i
ν , λi) ∈ R

2 × R × R+ comprises all state variables
associated with the ith contact node and

Φ(yi) =

⎡⎣Fλi∂‖u i
t‖

0
NR+(λi)

⎤⎦ ,

i = 1, 2, . . . , p. Let d̄ = (d̄1, d̄2, . . . , d̄p) ∈ (R4)p belong to the image set Q(ȳ) so that

d̄
i ∈ Φ(ȳi); i = 1, 2, . . . , p.

Due to the above reordering, y∗ = (y∗1, y∗2, . . . , y∗p) ∈ (R4)p belongs to D∗Q(ȳ, d̄)
(d∗) with d∗ = (d∗1,d∗2, . . . ,d∗p) ∈ (R4)p whenever

y∗i ∈ D∗Φ(ȳi, d̄
i)(d̄∗i), i = 1, 2, . . . , p.

This facilitates the computation of the coderivative D∗Q conducted in the subsequent
analysis. Put m := 4p.

Theorem 4.1. Consider the reference pair (ᾱ, ȳ) with ᾱ ∈ U , ȳ = S(ᾱ). Then
for each y∗ ∈ R

m

(4.1) (∇α(F (ᾱ)ȳ− l(ᾱ)))T z ⊂ D∗S(ᾱ)(y∗) ⊂ (∇α(F (ᾱ)ȳ− l(ᾱ)))TV ,

provided z is a solution of the regular adjoint GE (RAGE)

(4.2) 0 ∈ y∗ + (F (ᾱ))T z + D̂∗Q(ȳ,−F (ᾱ)ȳ + l(ᾱ))(z)

and V is the set of solutions v to the (limiting) adjoint GE (AGE)

(4.3) 0 ∈ y∗ + (F (ᾱ))T v + D∗Q(ȳ,−F (ᾱ)ȳ + l(ᾱ))(v).

Proof. By Theorem 3.13 the GE (3.18) satisfies SRC at (ᾱ, ȳ). It follows from
[22, Proposition 3.2] that the qualification condition

0 = (∇α(F (ᾱ)ȳ − l(ᾱ)))T v

0 ∈ (F (ᾱ))T v + D∗Q(ȳ,−F (ᾱ)ȳ + l(ᾱ))(v )

}
⇒ v = 0,

is fulfilled as well. Thus, the result holds true by virtue of [13, Theorem 2].
Corollary 4.2. If GrQ is normally regular at (ȳ,−F (ᾱ)ȳ + l(ᾱ)), then the

second inclusion in (4.1) becomes equality.
Let y∗ be an arbitrary vector from R

m. From the nonemptiness of conv D∗S(ᾱ)(y∗)
we conclude that AGE possesses a solution ṽ for each y∗ ∈ R

m. Further, again by the
Lipschitz continuity of S, AGE has among its solutions at least one which belongs
to the image of y∗ by the linear mapping (limi→∞(∇S(α(i)))T (·) for some sequence
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Table 4.1

no contact: weak contact: strong contact:
a4 = 0, b4 < 0 a4 = 0, b4 = 0 a4 > 0, b4 = 0

sliding:
M2 M1

a12 �= 0
weak sticking: L

a12 = 0 M4 M−
3

‖b12‖ = Fa4

strong sticking:

a12 = 0 - - - - - - - - - - - - - - M+
3‖b12‖ < Fa4

α(i) → ᾱ). Hence, at least one solution of AGE can be computed relatively easily.
Under the normal regularity assumption of the corollary, RAGE and AGE coincide
and so the above conclusions hold also for RAGE. In the nonregular case, however,
RAGE may be difficult to solve or may even not be solvable at all. From these reasons
we will use in the computation of the desired subgradient ξ ∈ ∂̄Θ(ᾱ) exclusively the
way via the AGE (4.3) and accept that in the nonregular case the computed vec-
tor ξ may be outside of ∂̄Θ(ᾱ). If this happens, the used bundle method need not
inevitably collapse. If it does, however, ξ must be replaced by a correct subgradient.

In the next part of this section we will concentrate on the solution of AGE in the
case of the GE (3.18) (after the performed reordering). Thereby the most important
issue is the position of the point (ȳ,−F (ᾱ)ȳ + l(ᾱ)) in GrQ or, more precisely, the
positions of (ȳi,−F i(ᾱ)ȳ + li(ᾱ)) in GrΦ, i = 1, 2, . . . , p, where F i(ᾱ)ȳ − li(ᾱ) is
the subvector of F (ᾱ)ȳ − l(ᾱ) associated with the ith contact node.

To facilitate the notation, let us consider instead of (yi,−F i(α)y + li(ᾱ)) a pair
of vectors (a, b) ∈ GrΦ ⊂ R

4 × R
4 (so that, necessarily, b3 = 0) and let us denote by

a12, b12 the 2D vectors (a1, a2)T , (b1, b2)T , respectively.
Clearly, GrΦ admits the partition

Gr Φ = L ∪ M1 ∪ M2 ∪ M+
3 ∪ M−

3 ∪ M4,

where the sets L, M1, M2, M
+
3 , M−

3 , and M4 are defined in Table 4.1.
The nature of these sets can be explained in mechanical terms. So, L refers to the

absence of contact (and hence also the absence of friction). When a12 �= 0, we speak
about sliding, in contrast to the case a12 = 0 which is called sticking. The adjective
“weak” is used as in complementarity [21] to indicate an unstable situation on the
boundary between two stable states. All in all, M1 amounts to sliding with contact,
M2 to sliding with weak contact, M+

3 to sticking with contact, M−
3 to weak sticking

with contact, and M4 to weak sticking with weak contact. Impossible combinations
are crossed out.

The sets L, M1, and M+
3 exhibit stable behavior in the sense that the implication

(ā, b̄) ∈ L( or M1 or M+
3 )

(a, b) ∈ GrΦ
(a, b) is sufficiently close to (ā, b̄)

⎫⎪⎬⎪⎭ ⇒ (a, b) ∈ L( or M1 or M+
3 )

is fulfilled. Indeed, e.g., in the case of M+
3 , the perturbed points a4, b12 also satisfy the

inequality ‖b12‖ < Fa4, provided the perturbations are sufficiently small. It follows
that a12 and b4 cannot be perturbed at all; otherwise (a, b) would not be in GrΦ.
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So, let us start with the computation of the coderivative of Φ for the sets L, M1,
and M+

3 .
Proposition 4.3. Let (ā, b̄) ∈ L. Then one has

(4.4) D∗Φ(ā, b̄)(b∗) =

{
{0}3 × R provided b∗4 = 0,

∅ otherwise.

Proof. By the definitions of L and Φ, there is a neighborhood O of (ā, b̄) such
that

GrΦ ∩ O = {(a, b)|a4 = b1 = b2 = b3 = 0, b4 < 0} ∩ O,

which means that Gr Φ coincides locally around (ā, b̄) with (R3×{0})×({0}3×R), and
so NGrΦ(ā, b̄) = ({0}3 × R) × (R3 × {0}). Now the result follows from the definition
of the coderivative.

Proposition 4.4. Let (ā, b̄) ∈ M1. Then one has

(4.5) D∗Φ(ā, b̄)(b∗) =

⎡⎢⎢⎣
0 0

CT 0 0
0 0 0 0

‖ā12‖−1F ā1 ‖ā12‖−1F ā2 0 0

⎤⎥⎥⎦ b∗,

where

C =
F ā4

‖ā12‖3

⎡⎣ (ā2)2 −ā1ā2

−ā1ā2 (ā1)2

⎤⎦ .

Proof. There is a neighborhood Õ of (ā, b̄) such that for all (a, b) ∈ Gr Φ ∩ Õ it
holds that

b = F

⎡⎢⎢⎣
‖a12‖−1a4a1

‖a12‖−1a4a2

0
0

⎤⎥⎥⎦ ,

and so it suffices to compute the adjoint Jacobian of this operator.
Proposition 4.5. Let (ā, b̄) ∈ M+

3 . Then one has

(4.6) D∗Φ(ā, b̄)(b∗) =

{
R2 × {0}2 provided b∗1 = b∗2 = 0,

∅ otherwise.

Proof. By the definitions of M+
3 and Φ, there is a neighborhood Ô of (ā, b̄) such

that

Gr Φ ∩ Ô = {(a, b)|a1 = a2 = 0, ‖b12‖ < Fa4, b3 = b4 = 0} ∩ Ô.

This means that GrΦ coincides locally around (ā, b̄) with ({0}2 ×R
2)× (R2 ×{0}2),

and so NGrΦ(ā, b̄)=(R2×{0}2)×({0}2×R
2). The rest follows again from the definition

of the coderivative.
Since GrΦ is normally regular at all points of L ∪ M1 ∪ M+

3 , (4.4)–(4.6) lead
to a correct subgradient ξ whenever all points (ȳi,−F i(ᾱ)ȳ + li(ᾱ)), i = 1, 2, . . . , p,
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belong to this union. The situation is not so satisfactory, provided we have to do with
the remaining sets M2, M

−
3 , and M4. In the case of M2 we can employ the following

auxiliary statement.
Lemma 4.6. Consider the multifunction F : R

n × R
m × R

o ⇒ R
l × R

p given by

F (x, y, z) =
[

G(x, y)
H(y, z)

]
,

where G : R
n×R

m ⇒ R
l, H : R

m×R
o ⇒ R

p are closed-graph multifunctions. Assume
that the point (x̄, ȳ, z̄, d̄1, d̄2) belongs to GrF and the qualification condition

(4.7)

[
0
w2

]
∈ D∗G(x̄, ȳ)(0)[ −w2

0

]
∈ D∗H(ȳ, z̄)(0)

⎫⎪⎪⎬⎪⎪⎭ ⇒ w2 ⇒ 0

holds true. Then one has
(4.8)

D∗F (x̄, ȳ, z̄, d̄1, d̄2)(d∗
1,d

∗
2)

⊂ {(w1,w2 + w3,w4) | (w1,w2) ∈ D∗G(x̄, ȳ)(d∗
1), (w3,w4) ∈ D∗H(ȳ, z̄)(d∗

2)}.

If G happens to be continuously differentiable near (x̄, ȳ), then condition (4.7) is
fulfilled and
(4.9)

D∗F (x̄, ȳ, z̄, d̄1, d̄2)(d∗
1,d

∗
2)

= {((∇xG(x̄, ȳ))T d∗
1, (∇yG(x̄, ȳ))T d∗

1 + w3,w4) | (w3,w4) ∈ D∗H(ȳ, z̄)(d∗
2)}.

Proof. Clearly, F amounts to the composition
[
G
H

]◦A, where A : R
n×R

m×R
o →

R
n × R

m × R
m × R

o is defined by

A =

⎡⎢⎢⎣
Id 0 0
0 Id 0
0 Id 0
0 0 Id

⎤⎥⎥⎦ .

Inclusion (4.8) follows thus directly from [24, Theorem 10.40 (second statement)].
To prove the converse inclusion, observe first that under the differentiability of G the
condition (4.7) is automatically fulfilled. Moreover, by the definition, each element ξ

of the right-hand side of (4.8) can be expressed as

ξ = lim
i→∞

AT

[
(∇G(x̄ , y(i)))Td∗

1

D̂∗H(y(i), z (i))(d∗(i)
2 )

]
for some sequence (y(i), z (i),d

∗(i)
2 ) → (ȳ, z̄ ,d∗

2). By [24, Theorem 10.40 (first state-
ment)], it holds for all i that

AT

[
(∇G(x̄ , y(i)))T (d∗

1)
D̂∗H(y(i), z (i))(d∗(i)

2 )

]
⊂ D̂∗F (x̄ , y(i), z (i))(d∗

1,d
∗(i)
2 ),

and so necessarily ξ ∈ D∗F (x̄ , ȳ, z̄ )(d∗
1,d

∗
2).
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We observe now that in the case of (ā, b̄) in M2 the multifunction Φ possesses
the structure of the map F in the above lemma with one of the multifunctions G, H
differentiable. So, we can use the relation (4.9) in the following statement.

Proposition 4.7. Let (ā, b̄) ∈ M2 . Then one has

(4.10) D∗Φ(ā, b̄)(b∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

0
0
0

ā1

‖ā12‖b∗1 +
ā2

‖ā12‖b∗2 + w

⎤⎥⎥⎥⎦ |w ∈
⎧⎨⎩

R if b∗
4 = 0

R− if b∗
4 < 0

0 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. Since the mapping a 
→ Fa4
a12

‖ā12‖ is continuously differentiable on a
neighborhood of ā, it suffices to compute the coderivative of the multifunction NR+(·)
at (ā4, b̄4) which is standard in the context of complementarity problems (see [21,
Lemma 2.2]). The rest follows from (4.9).

Remark 4.8. By comparing Propositions 4.3 and 4.7 we observe that for b∗4 =
0 the respective coderivative formulas coincide. This corresponds to the situation
when we compute the values of D∗Φ(ā, b̄)(b∗) for (ā, b̄) ∈ M2 as limits of values of
D̂∗Φ(a(i), b(i))(b∗(i)) with (a(i), b(i)) ∈ L. Similarly if b∗4 < 0, then (4.10) amounts to
the limit of the adjoint Jacobian of Φ in (4.5) when a4 ↓ 0. This corresponds to the
situation when we approach (ā, b̄) ∈ M2 by a sequence (a(i), b(i)) ⊂ M1.

Consider now a point (ā, b̄) ∈ M−
3 . By Table 4.1 there is an open interval U of

ā4 such that U ⊂ intR+ and

Φ(a) =

⎡⎣ Fa4∂‖a12‖
0
0

⎤⎦
whenever a4 ∈ U .

Clearly, Gr Φ locally around (ā, b̄) coincides with the union M1∪M+
3 ∪M−

3 . Since
these sets are disjoint, one has

(4.11) NGr Φ(ā, b̄) = N1 ∪ N2 ∪N3,

where

N1 = Lim sup
(a,b)

M1→ (ā,b̄)

N̂Gr Φ(a, b),

N2 = Lim sup

(a,b)
M

+
3→ (ā,b̄)

N̂GrΦ(a, b),

and

N3 = Limsup

(a,b)
M

−
3→ (ā,b̄)

N̂Gr Φ(a, b).

By Proposition 4.5,

N2 = (R2 × {0}2) × ({0}2 × R
2).

The computation of N1 and N3 is, however, not so straightforward.
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Lemma 4.9. Put w̄ = b̄12
F ā4

(so that ‖w̄‖ = 1). Then one has

(4.12)
N1 = {(a∗, b∗) ∈ R

4 × R
4|a∗

12 = 0, a∗
3 = 0, (a∗

4, b
∗
12) ∈ R(−F , w̄)}

∪ {(a∗, b∗) ∈ R
4 × R

4|a∗
12 ∈ w̄⊥, a∗

3 = a∗
4 = 0, b∗

12 = 0}.
Proof. We have to compute all accumulation points of sequences (a∗(i), b∗(i))

satisfying the equations (see (4.5))

a
∗(i)
12 = − Fa

(i)
4

‖a(i)
12 ‖

⎡⎢⎢⎢⎢⎣
(a(i)

2 )2

‖a(i)
12 ‖2

−a
(i)
1 a

(i)
2

‖a(i)
12 ‖2

−a
(i)
1 a

(i)
2

‖a(i)
12 ‖2

(a(i)
1 )2

‖a(i)
12 ‖2

⎤⎥⎥⎥⎥⎦
[

b
∗(i)
1

b
∗(i)
2

]
,

a
∗(i)
3 = 0,

a
∗(i)
4 = − F

‖a(i)
12 ‖

(ai
1b

∗(i)
1 + ai

2b
∗(i)
2 )

when ‖a(i)
12 ‖ ↓ 0 and a

(i)
4 → ā4 > 0. Put w (i) := a

(i)
12

‖a(i)
12 ‖ and

D(i) :=

⎡⎣ (w(i)
2 )2 −w

(i)
1 w

(i)
2

−w
(i)
1 w

(i)
2 (w(i)

1 )2

⎤⎦
so that w (i) → w̄ and

D(i) → D :=

[
w̄2

2 −w̄1w̄2

−w̄1w̄2 w̄2
1

]
.

A sequence {(a∗(i)
12 , a

∗(i)
4 , b

∗(i)
12 )} converges to an accumulation point (a∗

12, a
∗
4, b

∗
12) if

and only if the sequence

ξ(i) := D(i)

⎡⎢⎢⎢⎢⎣
b
∗(i)
1

‖a(i)
12 ‖

b
∗(i)
2

‖a(i)
12 ‖

⎤⎥⎥⎥⎥⎦
converges. This happens if either b

∗(i)
12 ∈ KerD(= Rw̄) for all i, or b∗

12 = 0. The
former case generates the first cone on the right-hand side of (4.12). In the latter case
limi→∞ ξ(i) can be everywhere in the range space of D which amounts to w̄⊥. This
gives rise to the second cone on the right-hand side of (4.12), and the statement has
been established.

Lemma 4.10. Consider a point (a, b) ∈ M−
3 , and put w := b12

Fa4
. Then one has

(4.13) N̂Gr Φ(a, b) = {(a∗, b∗) | 〈a∗
12,w〉 ≤ 0, a∗

3 = 0, (a∗
4, b

∗
12) ∈ R+(−F ,w)}.

Proof. We compute first the contingent cone TGrΦ(a, b). To this end we observe
that GrΦ locally around (ā, b̄) coincides with the union G1 ∪ G2, where

G1 =
{

(a, b) |a12 �= 0, b12 = Fa4
a12

‖a12‖ , b3 = b4 = 0
}
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and

G2 = {(a, b) |a12 = 0, b12 ∈ Fa4B, b3 = b4 = 0}.
Clearly,

TGr Φ(a, b) = TG1(a, b) ∪ TG2(a, b).

By the definition of the contingent cone,

TG1(a, b) =

{
(h , k)|∃h (i) → h , k (i) → k , λ(i) ↓ 0 such that

b12 + λ(i)k
(i)
12 = F(a4 + λ(i)h

(i)
4 )

λ(i)h
(i)
12

‖λ(i)h
(i)
12 ‖

, k
(i)
3 = k

(i)
4 = 0 ∀i

}
.

Then clearly

h
(i)
12

‖h(i)
12 ‖

→ w and k
(i)
12 −Fh

(i)
4

h
(i)
12

‖h(i)
12 ‖

= (λ(i))−1Fa4

(
h

(i)
12

‖h(i)
12 ‖

− w

)
→ w⊥.

It follows that

TG1(a, b) = {(h , k )|h12 ∈ R+w , k12 −Fh4w ∈ w⊥, k3 = k4 = 0}
= {(h , k )|h12 ∈ R+w , 〈k12,w〉 − Fh4 = 0, k3 = k4 = 0}.

In a similar way,

TG2(a, b) = {(h , k )|∃h (i) → h , k (i) → k , λ(i) ↓ 0 such that

h
(i)
12 = 0, b12 + λ(i)k

(i)
12 ∈ F(a4 + λ(i)h

(i)
4 )B, k

(i)
3 = k

(i)
4 = 0 ∀i}

so that

TG2(a, b) = {(h , k)|h12 = 0, 〈k12 −Fh4w ,w〉 ≤ 0, k3 = k4 = 0}
= {(h , k)|h12 = 0, 〈k12,w〉 − Fh4 ≤ 0, k3 = k4 = 0}.

By computing the negative polars we obtain that

N̂G1(a, b) = {(a∗, b∗)|〈a∗
12,w〉 ≤ 0, a∗

3 = 0, (a∗
4, b

∗
12) ∈ R(−F ,w)}

and

N̂G2(a, b) = {(a∗, b∗)|a∗
3 = 0, (a∗

4, b
∗
12) ∈ R+(−F ,w)}.

In this way we infer that

N̂GrΦ(a, b) = N̂G1(a, b) ∩ N̂G2(a, b)
= {(a∗, b∗)|〈a∗

12,w〉 ≤ 0, a∗
3 = 0, (a∗

4, b
∗
12) ∈ R+(−F ,w)},

and we are done.
On the basis of Lemmas 4.9 and 4.10 we arrive now at the following exact de-

scription of D∗Φ in the case of M−
3 .
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Theorem 4.11. Let (ā, b̄) ∈ M−
3 and w̄ = b̄12

F ā4
. Then one has

(4.14)

D∗Φ(ā, b̄)(b∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{a∗ ∈ R

4|a∗
12 = 0, a∗

3 = 0, a∗
4 = Fα} if b∗

12 = αw̄, α ≥ 0,

{a∗ ∈ R
4|〈a∗

12, w̄〉 ≤ 0, a∗
3 = 0, a∗

4 = Fα} if b∗
12 = αw̄, α ≤ 0,

R
2 × {0}2 if b∗

12 = 0,

∅ otherwise.

Proof. On the basis of Lemma 4.10 we can compute the cone N3. To this end it
suffices to realize that a4 → ā4(> 0) and b12 → b̄12 implies w = b12

Fa4
→ w̄ = b̄12

F ā4
.

Consequently, N3 = N̂GrΦ(ā, b̄). The rest follows from (4.11) and the definition of
the coderivative.

In the case of M4, however, this approach would be substantially more difficult.
The respective limiting normal cone will again have the structure of a union, some
parts of which can easily be computed. The set M4 consists, however, only of one
point (when we ignore variable a3), and so the absence of an exact formula does not
have a negative impact on the proposed numerical method. From this reason we also
omit a detailed analysis of this case here.

All derived formulas (4.4), (4.5), (4.6), (4.10), and (4.14) enable us to specify for
each node i a linear subspace

Li ∈ GrD∗Φ(ȳi,−F i(ᾱ)ȳ + li(ᾱ))

such that the AGE (4.3) amounts to the linear system

0 = y∗ + (F (ᾱ))T v + w(4.15)

(wi, vi) ∈ Li, i = 1, 2, . . . p.

This of course facilitates its numerical solution.
As already mentioned, if some nodes lie in M2 or M−

3 (or in M4), this technique
need not immediately lead to a correct subgradient due to the right inclusion in (4.1).
Fortunately, as shown by the performed numerical tests, such nodes occur very rarely
during the iteration process and typically cause some difficulties only close to optimal
points. Formulas (4.10) and (4.14) offer then a possibility to restore the convergence
by a suitable change of the adjoint system (4.15).

5. Numerical results. The results of the previous sections will now be used
for construction of a numerical method for the solution of (P̃). We assume that the
friction coefficient F is small enough in the sense of Theorem 3.8 so that the solution
of the contact problem with Coulomb friction is unique. Further, as in section 4, we
assume that the cost functional J is continuously differentiable. For the minimization
of Θ we use the BT code [27] based on the bundle-truss algorithm of Schramm and
Zowe [25]. In every step of the iteration process, this code has to be supplied with
the function value Θ(α) and one (arbitrary) Clarke’s subgradient of Θ at α.

5.1. Solving the state problem. To compute a function value J(α, S(α)), we
have to evaluate S(α), i.e., to solve the fixed point problem (P). For that, we use the
method of successive approximations introduced in Corollary 3.9. Each iterative step
requires us to solve the contact problem with given friction (M (L, g)), in which the
slip bound g is updated by the result of the previous iteration, i.e., g ≡ λ(k). The
problem (M (L, g)) is solved using the so-called reciprocal variational formulation (see
[8, 11, 12]). As in the previous sections, we denote by λ ∈ R

p the vector of normal
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contact stresses. Further, let τ ∈ R
2p be the vector of tangential contact stresses.

Notice that with each contact node we associate one component λi of λ and two
components τ2i−1, τ2i of τ . After eliminating the first variable u from (M (L, g)),
we arrive at the problem formulated in terms of contact stresses:

(5.1) min
σ∈ S

f(σ) :=
1
2
σTQσ − σTh

with

S = {σ = (λ, τ) ∈ R
3p | λi ≥ 0, τ2

2i−1 + τ2
2i ≤ g2

i , i = 1, 2, . . . , p},

where Q = BA−1BT , h = BA−1L + c, B = (N T ,TT )T , c = (αT , 0T )T , and
T ∈ R

2p×n stands for a matrix representation of the linear mapping T used in (3.3).
After computing λ, τ from (5.1), one obtains the eliminated variable u by

u = A−1(L−Nλ−Tτ).

As (5.1) is a strictly convex problem with quadratic objective and separable quadratic
constraints, it can be solved by the algorithm proposed by Kučera in [14] and analyzed
in [15]. The algorithm generalizes ideas of Dostál and Schöberl [5] originally proposed
for convex quadratic problems with simple bounds. Because an efficient solution
procedure for (5.1) is essential for the overall efficiency of our numerical approach, we
give a brief description of the algorithm.

Let N = {1, . . . , 3p} be the set of all indices. At a point σ ∈ S, we denote the
gradient of f by r = r(σ) = Qσ − h and introduce an active set A ⊆ N by

A := A(σ) = {i | λi = 0} ∪ {j | j = 2i − 1 + p : τ2
2i−1 + τ2

2i = g2
i }

∪ {j | j = 2i + p : τ2
2i−1 + τ2

2i = g2
i }.

Using the orthogonal projection PS : R
3p 
→ S, we define the projected gradient for a

fixed α̃ ≥ 0 as

r̃ = r̃(σ) =
1
α̃

(σ − PS(σ − α̃r(σ))).

Notice that the projected gradient enables us to write down the optimality criterion
characterizing the solution σ∗ of (5.1) in the form r̃(σ∗) = 0. Our algorithm is based
on the observation that nonzero components of r̃(σ) at σ �= σ∗ determine descent di-
rections changing appropriately the active set. To this end, we introduce components
of r̃(σ) and r(σ) called the projected free gradient ϕ̃ = ϕ̃(σ), the projected boundary
gradient β̃ = β̃(σ), and the free gradient ϕ = ϕ(σ), respectively, defined by

ϕ̃A = 0, ϕ̃N\A = r̃N\A,

β̃A = r̃A, β̃N\A = 0,

ϕA = 0, ϕN\A = rN\A.

We combine three steps to generate a sequence of iterates {σ(l)} that approxi-
mates the solution to (5.1):

• the expansion step: σ(l+1) = σ(l) − α̃ϕ̃(σ(l)),
• the proportioning step: σ(l+1) = σ(l) − α̃β̃(σ(l)),
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• the conjugate gradient step: σ(l+1) = σ(l) − α
(l)
cg p(l), where the step size α

(l)
cg

and the conjugate gradient directions p(l) are computed recurrently (see [7])
so that the recurrence starts from σ(s) generated by the last expansion or
proportioning step and A(σ(l+1)) = A(σ(s)).

The expansion step may add indices, while the proportioning step may release in-
dices to/from the current active set. The conjugate gradient step is used to carry
out efficiently minimization of the objective f on the interior of the set W (σ(s)) =
{σ ∈ S | σA = σ

(s)
A ,A = A(σ(s))}. Moreover, the algorithm exploits a given constant

Γ̃ > 0 and the releasing criterion

(5.2) β̃(σ(l))T r(σ(l)) ≤ Γ̃ ϕ̃(σ(l))T r(σ(l))

to decide which of the steps will be performed.
Algorithm 1. Let σ(0) ∈ S, Γ̃ > 0, α̃ ∈ (0, ‖Q‖−1], and ε ≥ 0 be given. For σ(l),

σ(s) known, 0 ≤ s ≤ l, where σ(s) is computed by the last expansion or proportioning
step, choose σ(l+1) by the following rules:

(i) If ‖r̃(σ(l))‖ ≤ ε, return σ = σ(l).
(ii) If σ(l) fulfills (5.2), try to generate σ(l+1) by the conjugate gradient step. If

σ(l+1) ∈ IntW (σ(s)), accept it, else generate σ(l+1) by the expansion step.
(iii) If σ(l) does not fulfil (5.2), generate σ(l+1) by the proportioning step.
Contrary to the simple bound problem analyzed in [5], the algorithm does not ex-

hibit the finite terminating property; the same convergence rate is, however, achieved.
In [15] one can find the following statement.

Theorem 5.1. Let σ∗ ∈ S denote the solution to (5.1), αmin denote the smallest
eigenvalue of Q, and Γ̂ = max{Γ̃, Γ̃−1}. Let {σ(l)} be the sequence generated by
Algorithm 1 with ε = 0. Then

f(σ(l+1)) − f(σ∗) ≤ η
(
f(σ(l)) − f(σ∗)

)
,

where

η = 1 − α̃αmin

2 + 2Γ̂2
< 1.

The error in the Q-energy norm is bounded by

‖σ(l) − σ∗‖2
Q ≤ 2ηl

(
f(σ(0)) − f(σ∗)

)
.

Theorem 5.1 yields the best value of the convergence rate factor η for the choice
Γ̃ = Γ̂ = 1 and α̃ = ‖Q‖−1. Then

η = 1 − 1
4
κ(Q),

where κ(Q) is the spectral condition number of Q .

5.2. Numerical examples. In order to work with a relatively small number
of control variables and, at the same time, to get a smooth shape of the optimal
boundary, we will model the contact boundary Γc by a Bézier surface of order d. The
design variable α is thus the vector of its control points. The Bézier surface ϑα of
order (d1, d2) in R(= [0, a] × [0, b]) is generated by a d1 × d2 matrix α as

ϑα(x1, x2) =
d1∑

i=0

d2∑
j=0

α(i,j)βi
d1

(x1)β
j
d2

(x2), (x1, x2) ∈ R,
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where

β�
d1

(x1) =
1

ad1

(
d1

�

)
x�

1(a − x1)d1−�, β�
d2

(x2) =
1

bd2

(
d2

�

)
x�

2(b − x2)d2−�.

The corner points of ϑα are identical to the “corner elements” of the control
matrix. The surface itself lies in the convex hull of the control points. This means
that any upper and lower bounds on the control points hold for the whole surface in
R, too.

The discrete shape optimization problem is now defined as follows:

(P̃B)
minimize J(α, S(α))
subject to α ∈ U ,

}

where U is given by

U =

{
α ∈ R

d1×d2 | 0 ≤ α(i,j) ≤ C0, i = 0, 1, . . . , d1, j = 0, 1, . . . , d2;

|α(i+1,j) − α(i,j)| ≤ C1
a

d1
, i = 0, 1, . . . , d1 − 1, j = 0, 1, . . . , d2;

|α(i,j+1) − α(i,j)| ≤ C1
b

d2
, i = 0, 1, . . . , d1, j = 0, 1, . . . , d2 − 1;

d1∑
i=0

d2∑
j=0

α(i,j) = C2(d1 + 1)(d2 + 1)

⎫⎬⎭ ,

where C0, C1, and C2 are given positive constants. The first set of constraints guar-
antees that |Fα(x)| ≤ C0 for all x ∈ R. The second and third constraint sets take
care of the slopes of ϑα in the direction of axes x1, x2. It is well known that if the
control points satisfy these conditions, then | ∂

∂xk
ϑα(x1, x2)| ≤ C1 for all (x1, x2) ∈ R,

k = 1, 2.
The equality constraint is added to control the volume of the domain by the

control points of the Bézier surface. The number (c − C2)ab equals the volume of
Ω(α) defined by

(5.3) Ω(α) = {(x1, x2, x3) ∈ R
3 | (x1, x2) ∈ (0, a) × (0, b), Fα(x1, x2) < x3 < c};

see Figure 5.1 which shows the body in 3D and 2D view. Thus, the equality constraint
has a physical meaning of preserving the weight of the structure.

All test examples solved below differ only in the cost function. The shape of the
elastic body Ω(α), α ∈ U , is given by (5.3), with a = 2, b = 1, and c = 1. The set of
admissible designs U is determined by the choice C0 = 0.75, C1 = 0.5, and C2 = 0.01.

The left-hand face Γu = {x ∈ Ω(α) | x1 = 0} is the part of the boundary with the
prescribed Dirichlet condition where all displacements are fixed to zero. The nonzero
external loads are defined as follows. The top face ΓP1 = {x ∈ Ω(α) | x3 = 1}
is subjected to constant pressure P1 = −8 · 10−2 N

m2 . The right-hand face ΓP2 =
{x ∈ Ω(α) | x1 = 1} is subjected to constant traction P2 = 5 · 10−2 N

m2 . The bottom
face Γc represented by the graph of ϑ(α) is supported by a rigid half-space R

2 ×R−.
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Fig. 5.1. The elastic body and applied loads.

The examples were solved with the Young modulus E = 21.19 Pa, Poisson’s constant
σ = 0.277, and the friction coefficient F = 0.3.

In Example 1 the reference body, a prism of size 2× 1 × 1, was uniformly carved
into 32 × 15 × 9 = 4320 bricks. The finite element discretization was constructed
by using trilinear elements. The total number of nodal displacements was 15360
including 1536 contact displacements. In Examples 2 and 3 we have used a coarser
discretization of 24 × 11 × 11 = 2904 bricks, giving 10398 nodal degrees of freedom
and 864 contact displacements. The partition of each Ω(α) was constructed from the
partition of the reference body Ω̂ by a suitable coordinate transformation in the x3

direction. The total number of design variables (control points of the Bézier surface)
was 32 (d1 = 8, d2 = 4).

Example 1. We try to find a shape of the contact surface for which the normal
stress is as close as possible to a prescribed function. The corresponding problem (P̃)
can be formulated as

minimize ‖λν − λν‖2
2

subject to α ∈ U ,

where λν is the vector of desired normal stresses. This target function is a step
function, depicted in Figure 5.2 (left). Figure 5.2 (right) shows the distribution of
the contact normal stresses for the initial shape, given by the constant vector α0 =
[0.01, . . . , 0.01].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

440 BEREMLIJSKI, HASLINGER, KOČVARA, KUČERA, OUTRATA
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Fig. 5.2. Example 1, target normal stress (left) and normal stress for initial design (right).
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Fig. 5.3. Example 1, optimal design.

0
0.5

1
1.5

2

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

x

Given stress

y

λ ν

0
0.5

1
1.5

2

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

0.3

x

Normal contact stress

y

λ ν

Fig. 5.4. Example 1, target normal stress (left) and normal stress for optimal design (right).

The objective function value for the initial design was equal to J(α0) = 1.9073606·
10−5. The stopping parameter for the code BT was set to ε = 1 · 10−4. This required
precision was reached after 307 iterations. (With a stopping tolerance decreased to
ε = 1 · 10−3, the code finished already after 12 iterations.) Figure 5.3 presents the
optimal solution, i.e., the optimal shape of the contact boundary, while Figure 5.4
compares the contact normal stresses with the prescribed values. We see that the
stresses for the optimal shape follow the step function rather closely.
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Fig. 5.5. Example 2, target normal stress (left) and normal stress for initial design (right).

Finally, we present the optimal shape in terms of the matrix of the respective
control points:

αopt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0104 0.0104 0.0104 0.0104
0.0052 0.0050 0.0050 0.0052
0.0016 0.0016 0.0016 0.0016
0.0048 0.0052 0.0052 0.0048
0.0107 0.0109 0.0109 0.0107
0.0129 0.0124 0.0124 0.0129
0.0151 0.0150 0.0150 0.0151
0.0194 0.0194 0.0194 0.0194

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The optimal value of the objective function was Jopt = 2.8432364 · 10−7.
Example 2. We consider the same objective function as in the previous example,

but this time we want to identify a “nonsymmetric” prescribed function shown in
Figure 5.5 (left). Figure 5.5 (right) shows the distribution of the contact normal
stresses for the initial shape, again given by the constant vector α0 = [0.01, . . . , 0.01].

The objective value for the initial design was equal to J(α0) = 4.635256 · 10−5.
For the stopping criterion ε = 1 ·10−4 we needed 233 iterations of the code BT. (With
a stopping tolerance decreased to ε = 1 · 10−3, the code finished already after 20
iterations.) Figure 5.6 presents the optimal solution, i.e., the optimal shape of the
contact boundary, while Figure 5.7 compares the contact normal stresses with the
prescribed values.

Finally, we present the optimal shape in terms of the matrix of the respective
control points:

αopt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0071 0.0069 0.0066 0.0067
0.0048 0.0045 0.0046 0.0053
0.0019 0.0022 0.0045 0.0053
0.0034 0.0044 0.0094 0.0096
0.0075 0.0085 0.0147 0.0149
0.0085 0.0092 0.0148 0.0160
0.0112 0.0133 0.0185 0.0205
0.0144 0.0169 0.0212 0.0228

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The optimal value of the objective function was Jopt = 1.2315453 · 10−5.
Example 3. Finally, we solve the same problem as in the previous two examples,

now with a prescribed stress distribution as shown in Figure 5.8 (left). Figure 5.8
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Fig. 5.6. Example 2, optimal design.
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Fig. 5.7. Example 2, target normal stress (left) and normal stress for optimal design (right).
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Fig. 5.8. Example 3, target normal stress (left) and normal stress for initial design (right).

(right) shows the distribution of the contact normal stresses for the initial shape
given, as before, by the constant vector α0 = [0.01, . . . , 0.01].

The objective value for the initial design was equal to J(α0) = 4.3084971·10−5. To
reach the precision ε = 1 ·10−4 the BT code required 286 iterations. (With a stopping
tolerance decreased to ε = 1 · 10−3, the code needed only 24 iterations.) Figure 5.9
shows the optimal shape of the contact boundary, while Figure 5.10 compares the
contact normal stresses with the prescribed values.
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Fig. 5.9. Example 3, optimal design.
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Fig. 5.10. Example 3, target normal stress (left) and normal stress for optimal design (right).

The optimal shape in terms of the matrix of the respective control points is given
below:

αopt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0074 0.0071 0.0067 0.0070
0.0034 0.0028 0.0018 0.0022
0.0022 0.0024 0.0022 0.0021
0.0045 0.0055 0.0083 0.0078
0.0092 0.0091 0.0125 0.0123
0.0134 0.0129 0.0129 0.0131
0.0160 0.0173 0.0172 0.0181
0.0199 0.0205 0.0210 0.0212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The optimal value of the objective function was Jopt = 4.1426132 · 10−6.
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REFERENCES

[1] R. L. Benedict and J. E. Taylor, Optimal design for elastic bodies in contact, in Optimization
of Distributed Parameter Structures, Part II, E. J. Haug and J. Céa, eds., Sijthoff &
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[14] R. Kučera, Minimizing quadratic functions with separable quadratic constraints, Optim. Meth-
ods Softw., 22 (2007), pp. 453–467.
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