
J. Differential Equations 248 (2010) 1579–1602
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Stochastic wave equation with critical nonlinearities:
Temporal regularity and uniqueness ✩

Martin Ondreját 1

Institute of Information Theory and Automation, Pod Vodárenskou věží 4, CZ-182 08, Praha 8, Czech Republic
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We consider a nonlinear wave equation utt = �u + f (u) + g(u)Ẇ
on R

d driven by a spatially homogeneous Wiener process W with
a finite spectral measure and with nonlinear terms f , g of critical
growth. We study pathwise uniqueness and norm continuity of
paths of (u, ut) in H1(Rd)⊕ L2(Rd) under the hypothesis that there
exists a local solution u such that (u, ut) has weakly continuous
paths in H1(Rd) ⊕ L2(Rd).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Wave equations utt = �u + f (u) + g(u)Ẇ subject to random excitations have been thoroughly
studied in last years for its applications in physics, relativistic quantum mechanics and oceanography
(see e.g. [1–3,5,7–9,12–17,19,20,22–24] and references therein). The randomness in these equations
has been predominantly modeled by spatially homogeneous Wiener processes, i.e. by centered Gaus-
sian processes (W (t, x): t � 0, x ∈ Rd) satisfying

EW (t, x)W (s, y) = (t ∧ s)Γ (x − y), t, s � 0, x, y ∈ Rd,

for some function or even a distribution Γ called the spatial correlation of W (see e.g. [25] for details).
Except for the works [5,16,19,20] and [22], the functions f , g : R → R were assumed to be globally

Lipschitz in the above cited papers. Global lipschitzianity of the real functions f and g allows one to
study the equation on the state space L2(Rd) ⊕ H−1(Rd) where the Nemytski operators associated
to f and g are globally Lipschitz, the spatial correlation Γ may be very general, e.g. a distribution
or at least a continuous function possibly unbounded at the origin, and, consequently, the solution
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and its derivative (u, ut) take values in L2(Rd) ⊕ H−1(Rd). If f , g : R → R are only locally Lipschitz
then various techniques of proof of existence of solutions – usually based on Lyapunov functions,
energy estimates, Sobolev embeddings or the fine Strichartz inequality – require the state space for
the solution to be the so-called “energy space” H1(Rd)⊕ L2(Rd) (see e.g. [26]), the spatial correlation

Γ to be a bounded function and the spectral measure μ = (2π)
d
2 Γ̂ to be a finite measure (cf. equality

(4.1) in this paper).
There is a few results concerning the stochastic wave equation

utt = �u + f (u) + g(u)Ẇ , u(0) = u0, ut(0) = v0 (1.1)

on Rd where f , g : R → R are general locally Lipschitz (or even merely continuous) functions that
we will survey, for purposes of instructiveness and notational simplicity, just for the equation with
polynomial nonlinearities

utt = �u − u|u|p−1 + |u|p̃ Ẇ , u(0) = u0, ut(0) = v0. (1.2)

It is known that global weak solutions (weak both in the probabilistic and in the PDE sense) exist
provided that (u0, v0) is an F0-measurable [H1(Rd) ∩ L p+1(Rd)] ⊕ L2(Rd)-valued random variable,

W is a spatially homogeneous Wiener process with bounded spectral correlation Γ (i.e. μ = (2π)
d
2 Γ̂

must be a finite measure) and

1 � p̃ � p + 1

2
< ∞. (1.3)

In this case, paths of (u, ut) are known to take values in [H1(Rd) ∩ L p+1(Rd)] ⊕ L2(Rd) and to be
weakly continuous in H1(Rd) ⊕ L2(Rd). Pathwise uniqueness is in general an open problem. These
results were proved in [19] in a more general setting under, however, more stringent assumption
1 � p̃ <

p+1
2 < ∞. An extension to the critical case p̃ = p+1

2 is possible (details will be given in a
separate note).

Better results are known provided that either d � 2, or d � 3 and p, p̃ ∈ [1, d
d−2 ]. If (u0, v0) is an

F0-measurable H1(Rd) ⊕ L2(Rd)-valued random variable and W is a spatially homogeneous Wiener
process with bounded spectral correlation Γ then there exists a local mild H1(Rd) ⊕ L2(Rd)-valued
solution of (1.2), any weak H1(Rd) ⊕ L2(Rd)-valued local solution of (1.2) in the PDE sense is a mild
H1(Rd)⊕ L2(Rd)-norm continuous local solution, pathwise uniqueness holds in the class of H1(Rd)⊕
L2(Rd)-valued solutions and the unique solution is global provided that (1.3) holds (see [20]).

Since the case d � 2 was resolved in the above cited works satisfactorily, the attention was paid
to the case d � 3. It was proved that pathwise uniqueness holds among weak (in the PDE sense)
local solutions of (1.2) with H1(Rd) ⊕ L2(Rd)-weakly continuous paths if p < d+2

d−2 and p̃ < d+1
d−2 (i.e.

the subcritical case) provided that the spectral measure μ = (2π)
d
2 Γ̂ of the spatially homogeneous

Wiener process W is finite and has a finite εth-moment for some small positive ε = ε(d, p, p̃) (see
[22]).

The aim of the present paper is to deal with the remaining problems in the subcritical case and
problems in the critical case p � d+2

d−2 and p̃ � d+1
d−2 (we remark that the critical case has not been

studied yet at all). Thus, we study

(1) pathwise uniqueness in the class of adapted processes with H1(Rd) ⊕ L2(Rd)-weakly continuous
paths,

(2) conditions under which local solutions with H1(Rd) ⊕ L2(Rd)-weakly continuous paths have
H1(Rd) ⊕ L2(Rd)-norm continuous paths.
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It shows up that both (1) and (2) hold in the class of adapted processes z = (u, v) with H1(Rd) ⊕
L2(Rd)-weakly continuous paths such that

u ∈ Lq
loc

(
R+; Ḃ

1
2
q
(
Rd)) (1.4)

where q = 2 d+1
d−1 and Ḃ

1
2
q (Rd) is the homogeneous Besov space, provided that the spectral measure

μ = (2π)
d
2 Γ̂ of the spatially homogeneous Wiener process W is finite and has a finite εth-moment

for some small positive ε = ε(d, p, p̃).
This result makes the subcritical case p < d+2

d−2 , p̃ < d+1
d−2 completely resolved since the additional

hypothesis (1.4) is always satisfied in this case (see [22]). Yet, the critical case p = d+2
d−2 , p̃ = d+1

d−2 is
resolved by this result only partially as the problem of existence of a solution of (1.2) satisfying (1.4)
is still open.

Let us also present the state of art for the deterministic Cauchy problem

utt = �u − u|u|p−1, u(0) = u0, ut(0) = v0 (1.5)

on Rd for d � 3. It is known that there exists a global solution u of (1.5) such that the path of (u, ut)

is weakly continuous in H1(Rd) ⊕ L2(Rd) if p ∈ [1,∞), u0 ∈ H1(Rd) ∩ L p+1(Rd) and v0 ∈ L2(Rd)

(see [27] or [29]), and this solution is norm continuous in H1(Rd) ⊕ L2(Rd) and unique in the class
C w(R+; H1(Rd) ⊕ L2(Rd)) provided that p < d+2

d−2 (see [11]). If p = d+2
d−2 then there exists a unique

global solution of (1.5) in the class

{
u: (u, ut) ∈ C w

(
R+; H1(Rd) ⊕ L2(Rd)), u ∈ Lq

loc

(
R+; Ḃ

1
2
q
)}

where q = 2 d+1
d−1 provided that u0 ∈ H1(Rd) and v0 ∈ L2(Rd) (see [28]).

We aim at proving the stochastic equivalent of the above mentioned PDE results. We, however,
remark at this point that proofs of H1(Rd) ⊕ L2(Rd)-norm continuity of solutions of deterministic
wave equations with subcritically and critically growing nonlinearities are based on time reversal (see
[11] and [28]) and this approach is not transferable to the case of SPDEs because of the presence of a
nondecreasing filtration on a probability space. Our proof is therefore conducted in a different way.

We also remark, for completeness, that neither uniqueness nor temporal regularity is known to
hold for (1.5) if p > d+2

d−2 or for (1.1) if p > d+2
d−2 or p̃ > d+1

d−2 , and the energy functional (7.4) is not well

defined on the whole energy space H1 ⊕ L2 either. These are just few reasons why the exponents
p = d+2

d−2 and p̃ = d+1
d−2 are called critical.

Results of this paper are based on the Strichartz inequalities for the wave group (Tt) and on
estimations of the γ -radonifying norm of Tt ◦ Mh where Mh : ξ → h · ξ is a multiplication operator
from the RKHS of the Wiener process to a homogeneous Besov or a Lebesgue space. These (and other
preliminary and technical) results are collected in Appendix A of this paper.

2. Notation and conventions

The following notation and conventions will be used throughout this paper.

• SR , SC denote the separable Fréchet spaces of rapidly decreasing real/complex functions on Rd

equipped with the pseudonorms

‖ϕ‖m = sup
x∈Rd, |α|�m

(
1 + |x|m)∣∣Dαϕ(x)

∣∣, m � 1,

• S ′
R

, S ′
C

denote the topological dual spaces to SR , SC , respectively,
• D denotes the space of real compactly supported smooth functions on Rd ,
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• F , F−1 denote the Fourier and the inverse Fourier transformations

Fϕ(x) = (2π)−
d
2

∫
Rd

e−i〈x,y〉ϕ(y)dy, F−1ϕ(x) = (2π)−
d
2

∫
Rd

ei〈x,y〉ϕ(y)dy,

• P denotes the space of complex polynomials on Rd ,
• L (X, Y ) denotes the space of linear continuous operators from X to Y ,
• L2(X, Y ) denotes the space of γ -radonifying operators from X to Y (see Definition 5.1),
• Hs = Hs,2(Rd), s ∈ R, is the scale of Sobolev spaces on Rd ,
• Ḃs

p denotes the homogeneous Besov space Ḃs
p,2(R

d) (see Appendix A),

• if 1 � r � ∞ then r′ denotes the Hölder conjugate exponent 1 � r′ � ∞ such that 1
r + 1

r′ = 1.

3. General assumptions

The following assumptions and hypotheses are imposed throughout this paper.

• We work on Rd for d � 3,
• μ is a finite symmetric measure on Rd , i.e. μ(A) = μ(−A) for every Borel A ⊆ Rd ,
• any filtration (Ft) of any probability space (Ω,F ,P) considered in this paper is assumed to be

right-continuous and complete, i.e. Ft = ⋂
r>t Fr , t � 0, and F ∈ F0 for every P-negligible set

F ∈ F ,
• f , g : R → R are locally Lipschitz functions satisfying

f (0) = g(0) = 0,
∣∣ f ′(x)

∣∣ � c
(
1 + |x|p−1), ∣∣g′(x)

∣∣ � c
(
1 + |x|p̃−1) (3.1)

for almost every x ∈ R where p = d+2
d−2 , p̃ = d+1

d−2 and c ∈ (0,∞).

4. Spatially homogeneous Wiener process

Following [25] (that we recommend as a good survey of properties and examples of spatially ho-
mogeneous Wiener processes), let μ be a finite symmetric measure on Rd (that we will call a spectral
measure) and let (Ω,F , (Ft),P) be a stochastic basis. A spatially homogeneous Wiener process with
spectral measure μ may be introduced by two equivalent ways. The first one is to think of a centered
Gaussian process (W (t, x): t � 0, x ∈ Rd) such that (W (t, x): t � 0) is an (Ft)-Wiener process for
every x ∈ Rd and

E
{

W(s, x)W(t, y)
} = min{s, t}Γ (x − y), t, s � 0, x, y ∈ Rd,

where Γ : Rd → R is the Fourier transform of (2π)− d
2 μ. Another way is to consider an S ′

R
-valued

(Ft)-Wiener process satisfying

E
{〈

W (s),ϕ0
〉〈

W (t),ϕ1
〉} = min{s, t}〈ϕ̂0, ϕ̂1〉L2(μ), t, s � 0, ϕ0,ϕ1 ∈ SR.

The equivalent assignment between W and W is given by the formula (see e.g. page 190 in [25])

〈
W (t),ϕ

〉 = ∫
Rd

W(t, x)ϕ(x)dx, t � 0, ϕ ∈ SR.

The following proposition describes the reproducing kernel Hilbert space (RKHS) of a spatially
homogeneous Wiener process and some of its properties. It is, in fact, an extension of Lemma 1 in
[20].
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Proposition 4.1. Let W be a spatially homogeneous Wiener process with a finite spectral measure μ. Then the
reproducing kernel Hilbert space of W (denoted by Hμ) is described as

Hμ = {
ψ̂μ: ψ ∈ L2

C

(
Rd,μ

)
, ψ(x) = ψ(−x)

}
,

〈ψ̂0μ, ψ̂1μ〉Hμ = 〈ψ0,ψ1〉L2(μ),

Hμ is continuously embedded in the space of real continuous bounded functions on Rd and

‖ξ �→ hξ‖L2(Hμ,L2(Rd)) = c‖h‖L2(Rd), h ∈ L2
R

(
Rd), (4.1)

‖ξ �→ hξ‖L2(Hμ,H−1(Rd)) � cθ‖h‖Lθ (Rd), h ∈ Lθ
R

(
Rd), (4.2)

hold for some constants c = cd[μ(Rd)] 1
2 , cθ ∈ R+ and for any θ ∈ ( 2d

d+2 ,2].

Proof. All claims were proved in Proposition 1.2 in [25] and in Lemma 1 in [20] except for (4.2). For
let φ ∈ SR . Then

∑
k

‖φξk‖2
H−1 =

∑
k

∫
Rd

|φ̂ξk(x)|2
1 + |x|2 dx = (2π)−d

∑
k

∫
Rd

|〈φ̂(x − ·),ψk〉L2(μ)|2
1 + |x|2 dx

� (2π)−d
∫
Rd

∫
Rd

|φ̂(x − z)|2
1 + |x|2 dxμ(dz) � c1‖φ̂‖2

Lθ ′ � c2‖φ‖2
Lθ

where ξk = ψ̂kμ, k � 1, is an ONB in Hμ . If h ∈ Lθ , let φ j ∈ SR be such that lim j→∞ ‖θ j − h‖Lθ = 0.
Then ∑

k

‖hξk‖2
H−1 � lim inf

j→∞
∑

k

‖φ jξk‖2
H−1 � c2 lim inf

j→∞
‖φ j‖2

Lθ = c2‖h‖2
Lθ

by Fatou’s lemma. �
5. Stochastic integration

Before we pass to stochastic integrals with respect to spatially homogeneous Wiener processes, we
must recall the definition of γ -radonifying operators and 2-smooth Banach spaces.

Definition 5.1. If H is a real separable Hilbert space and X is a separable Banach space, a linear
bounded operator A : H → X is γ -radonifying if there exists a centered Gaussian probability measure
νA on X with the covariance A A∗ . Such a measure is at most one, and in that case, we define

‖A‖2
L2(H,X) =

∫
X

‖x‖2 νA(dx)

and denote by L2(H, X) the set of γ -radonifying operators from H to X .

The vector space (L2(Hμ, X),‖ · ‖L2(Hμ,X)) is a separable Banach space (see [18] or [21]) and
coincides with the space of Hilbert–Schmidt operators if X is a Hilbert space.
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Definition 5.2. A Banach space X is 2-smooth provided that there exists a constant c < ∞ such that

‖x + y‖2 + ‖x − y‖2 � 2‖x‖2 + 2c‖y‖2, x, y ∈ X .

If W is a cylindrical (Ft)-Wiener process on a real separable Hilbert space H then the stochas-
tic integral

∫ T
0 h dW can be constructed as a random variable in X provided that h is an (Ft)-

progressively measurable process with values in L2(H, X) and

T∫
0

∥∥h(s)
∥∥2

L2(H,X)
ds < ∞.

See [18,21] or [6] for details. We remark that H = Hμ if W is a spatially homogeneous Wiener process
with spectral measure μ.

6. Solution

Let

• (Ω,F , (Ft),P) be a stochastic basis,
• μ be a finite symmetric measure on Rd ,
• W be a spatially homogeneous (Ft)-Wiener process with spectral measure μ,
• 0 < τ � ∞ be an accessible (Ft)-stopping time (i.e. there exists a sequence of (Ft)-stopping

times τn < τ a.s. such that τn ↑ τ a.s.),
• z = (u, v) be an (Ft)-progressively measurable process with weakly continuous paths in

H1
R
(Rd) ⊕ L2

R
(Rd) defined on the (Ft)-progressively measurable set {(t,ω): 0 � t < τ(ω)}

and let

〈
u(ρ),ϕ

〉 = 〈
u(0),ϕ

〉 + ρ∫
0

〈
v(s),ϕ

〉
ds,

〈
v(ρ),ϕ

〉 = 〈
v(0),ϕ

〉 + ρ∫
0

〈
u(s),�ϕ

〉
ds +

ρ∫
0

〈
f
(
u(s)

)
,ϕ

〉
ds +

ρ∫
0

〈
g
(
u(s)

)
dW ,ϕ

〉
(6.1)

hold almost surely for every ϕ ∈ D and every (Ft)-stopping time ρ < τ a.s. Here 〈a,b〉 =∫
Rd a(x)b(x)dx. The process z is then called a solution without further reference to (6.1) or (1.1).

Remark 6.1. Notice that f (u) and g(u) are (Ft)-progressively measurable processes with locally

bounded paths in L2(Rd) + L
2d

d+2 (Rd) ⊆ H−1(Rd) and L2(Rd) + L
2d

d+1 (Rd) ⊆ H−1(Rd), respectively. In
fact, the estimations

∥∥ f (u)
∥∥

H−1 � c1
∥∥ f (u)

∥∥
L2+L

2d
d+2

� c2
(‖u‖L2 + ‖u‖

d+2
d−2

L
2d

d−2

)
� c3

(‖u‖H1 + ‖u‖
d+2
d−2

H1

)
,

∥∥ξ �→ g(u)ξ
∥∥

L2(Hμ,H−1)
� c4

∥∥g(u)
∥∥

L2+L
2d

d+1
� c5

(‖u‖L2 + ‖u‖
d+1
d−2

L
2d

d−2

)
� c6

(‖u‖H1 + ‖u‖
d+1
d−2

H1

)
obtained with the help of (4.2) yield not only that the integrals in (6.1) are convergent but also that
(6.1) is equivalent with
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u(ρ) = u(0) +
ρ∫

0

v(s)ds, (6.2)

v(ρ) = v(0) +
ρ∫

0

�u(s)ds +
ρ∫

0

f
(
u(s)

)
ds +

ρ∫
0

g
(
u(s)

)
dW (6.3)

holding almost surely for every (Ft)-stopping time ρ < τ a.s. The integral in (6.2) converges in L2

and the integrals in (6.3) converge in H−1.
As a consequence of norm continuity in L2 ⊕ H−1 and weak continuity in H1 ⊕ L2 of paths of a

solution z, we get the following result by interpolation:

Theorem 6.2. If (z(t))t<τ is a solution and ε > 0 then z ∈ C([0, τ ); H1−ε ⊕ H−ε) a.s.

7. Main results

Let us start by a motivating example dealing with the subcritical case.

Example 7.1. It is known (see [22]) that if f and g have a subcritical growth, i.e. (3.1) holds for
p < d+2

d−2 , p̃ < d+1
d−2 , then there exists ε ∈ [0, d

d−1 ) such that

z ∈ Lq
loc

([0, τ ); Ḃ
1
2
q ⊕ Ḃ

− 1
2

q
)

a.s. (7.1)

where q = 2 d+1
d−1 , z = (u, v) is a solution (understood in the sense of Section 6) and pathwise unique-

ness holds for (6.1) among adapted processes with H1 ⊕ L2-weakly continuous paths provided that∫
Rd

(
1 + |z|ε)μ(dz) < ∞. (7.2)

We remark that the range [0, d
d−1 ) for ε is universal for all p < d+2

d−2 and p̃ < d+1
d−2 but not optimal

for particular p and p̃. For instance, existence of global solutions of (6.1) can be proved for many f , g
satisfying (3.1) for p̃ � p+1

2 (see e.g. [19]) and in this case pathwise uniqueness and (7.1) hold if (7.2)
is satisfied for some ε ∈ [0,1) (see Remarks 9 and 36 in [22]).

Remark 7.2. Existence of solutions satisfying (7.1) for the critical nonlinearities, i.e. for f and g satis-
fying (3.1) for p = d+2

d−2 , p̃ = d+1
d−2 , will be dealt with in a separate paper.

Motivated by Example 7.1, we return back to the general case of nonlinearities of the critical
growth and finite spectral measure restricting however our attention to solutions in the class (7.1)
where we will prove regularity (sharpening the result in Theorem 6.2) and an energy estimate.

Theorem 7.3 (Regularity). Let the assumptions in Section 3 hold and let (7.1) be satisfied for a solution
(z(t))t<τ . Then almost all paths of z = (u, v) belong to C([0, τ ); H1 ⊕ L2).

Theorem 7.4 (Energy). Let the assumptions in Section 3 hold, let (7.1) be satisfied for a solution (z(t))t<τ , let
f1, f2, F1, F2 : R → R satisfy

• f1(0) = f2(0) = F1(0) = F2(0) = F ′
1(0) = F ′

2(0) = 0,
• f = f1 + f2 ,
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• f1, f2 ∈ W 1,∞
loc (R), F1, F2 ∈ W 2,∞

loc (R), f ′
1, F ′′

1 ∈ L∞(R),

• | f ′
2(r)| + |F ′′

2 (r)| � c|r| 4
d−2 for a.e. r ∈ R and some c < ∞.

Then almost all paths of f2(u) and F ′
2(u) belong to Lq′

loc([0, τ ); Ḃ
1
2
q′ ), almost all paths of g(u) belong to

L2
loc([0, τ ); L2) and there exists M ∈ F0 , P(M) = 1, such that

e
(
z(t,ω)

) = e
(
z(0,ω)

) + I(t,ω) +
t∫

0

〈
v(s,ω), f1

(
u(s,ω)

) + F ′
1

(
u(s,ω)

)〉
L2 ds

+
t∫

0

〈
v(s,ω), f2

(
u(s,ω)

) + F ′
2

(
u(s,ω)

)〉
B

− 1
2

q ×B
1
2

q′
ds + c2

2

t∫
0

∥∥g
(
u(s,ω)

)∥∥2
L2 ds (7.3)

holds for every ω ∈ M and every t ∈ [0, τ (ω)) where

e(z) = 1

2
‖∇u‖2

L2 + 1

2
‖v‖2

L2 +
∫
Rd

F1(u)dx +
∫
Rd

F2(u)dx, z = (u, v) ∈ H1 ⊕ L2, (7.4)

and I is a progressively measurable process with continuous paths defined on {(t,ω): t < τ(ω)} such that

I(ρ) =
ρ∫

0

〈
v(s), g

(
u(s)

)
dW

〉
L2 a.s.

holds for every (Ft)-stopping time ρ satisfying ρ < τ a.s.

Concerning pathwise uniqueness of solutions of (6.1) in the critical case, we introduce a weaker
hypothesis than (7.1), namely we say that (7.5) is satisfied for a solution z = (u, v) defined on [0, τ )

provided that

u ∈ Ls
loc

([0, τ ); Ls(Rd)) a.s. (7.5)

where s = 2 d+1
d−2 . Indeed, (7.1) implies (7.5) by Lemma A.7.

Theorem 7.5 (Pathwise uniqueness). Let the assumptions in Section 3 hold and let (zi(t))t<τ i , i = 1,2, be two

solutions with respect to a spatially homogeneous Wiener process W such that z1(0) = z2(0) a.s. and (7.5) is
satisfied for z1 , z2 . Then z1(t) = z2(t) for every t < τ 1 ∧ τ 2 a.s.

Theorem 7.6 (Second component regularity). Let the assumptions in Section 3 hold and let (z(t))t<τ be a
solution with respect to a spatially homogeneous Wiener process W whose spectral measure μ satisfies∫

Rd

(
1 + |y|) d

d+1 +ε
μ(dy) < ∞ (7.6)

for some ε > 0. Then z satisfies (7.1) if and only if u ∈ Lq
loc([0, τ ), Ḃ

1
2
q ) a.s. where q = 2 d+1

d−1 .
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Remark 7.7. The condition (7.6) may be relaxed if g′ has a subcritical growth. For instance, we can

often prove existence of global solutions provided that |g′(t)| � (1 + |t| 2
d−2 ) for a.e. t ∈ R (cf. [19]),

and in this case (7.6) may be replaced by∫
Rd

(
1 + |y|) d−1

d+1 μ(dy) < ∞

in Theorem 7.6 (see Remark 9.2).

8. Proof of Theorems 7.3 and 7.4

The proof is divided into eleven steps.

Step 0. H1 ⊕ L2-continuity of paths of z (i.e. Theorem 7.3) follows from (7.3), i.e. from Theorem 7.4.
Indeed, choosing F1(x) = 1

2 |x|2 and F2(x) = 0 in (7.3) we get that almost every path of ‖z‖H1⊕L2 is
continuous on [0, τ ). Hence z ∈ C([0, τ ); H1 ⊕ L2) a.s. as weak H1 ⊕ L2-continuity of paths of z was
assumed.

Step 1. Let us prove Theorem 7.4. Paths of f2(u) and F ′
2(u) belong to Lq′

loc([0, τ ); Ḃ
1
2
q′ ) a.s. and paths

of g(u) belong to L2
loc([0, τ ); L2) a.s. by Lemma A.7. This is apparent for f2 and F ′

2. In case of g ,
find locally Lipschitz functions g1, g2 such that g = g1 + g2, g1(0) = g2(0) = 0, ‖g′

1‖L∞ < ∞ and

|g′
2(x)| � c|x| 3

d−2 . Then ‖g1(u)‖L2 � c‖u‖L2 and

∥∥g2(u)
∥∥2

L2((0,τn);L2)
� c1

τn∫
0

∥∥u(t)
∥∥s

Ls dt � c2

τn∫
0

∥∥u(t)
∥∥q

Ḃ
1
2

q

∥∥u(t)
∥∥ s

d−1

H1 dt

� c2‖u‖q

Lq((0,τn);Ḃ
1
2

q )

‖u‖
s

d−1

L∞((0,τn);H1)
< ∞ a.s.

for every n ∈ N where s = 2 d+1
d−2 by Lemma A.7.

Step 2. Let n � 1 be fixed and let b1 be a smooth compactly supported density on Rd and de-
fine bm(x) = mdb1(mx), x ∈ Rd , and zm = (um, vm) whose components are defined for t � 0 by the
formulae

um(t) = bm ∗ u(0) +
t∫

0

1[s�τn]bm ∗ v(s)ds,

vm(t) = bm ∗ v(0) +
t∫

0

1[s�τn]
{
�bm ∗ u(s) + bm ∗ f

(
u(s)

)}
ds

+
t∫

0

1[s�τn]bm ∗ [
g
(
u(s)

)
dW

]
. (8.1)

Observing that ξ �→ bm ∗ ξ : H−1 → Hk is continuous for every k � 0 (by the Young inequality), the
integrals in (8.1) converge in Hk for every k � 0 and zm is an adapted process with continuous paths
in Hk ⊕ Hk , k � 0. Moreover, by (6.2), (6.3) and by continuity of paths,

zm(t) = bm ∗ z(t), t ∈ [0, τn], a.s. (8.2)
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Step 3. Assume that h : R → R is smooth, h(0) = h′(0) = 0 and k > d
2 , i.e. Hk ⊆ Cb continuously

where Cb is the space of bounded continuous functions on Rd equipped with the supremal norm. The
function

eh(z) = 1

2
‖∇u‖2

L2 + 1

2
‖v‖2

L2 +
∫
Rd

h
(
u(x)

)
dx, z = (u, v) ∈ Hk ⊕ Hk,

is twice continuously differentiable on Hk ⊕ Hk and

e′
h(z)a = 〈∇u,∇a1〉L2 + 〈v,a2〉L2 +

∫
Rd

h′(u(x)
)
a1(x)dx,

e′′
h(z)(a, w) = 〈∇w1,∇a1〉L2 + 〈w2,a2〉L2 +

∫
Rd

h′′(u(x)
)
a1(x)w1(x)dx

hold for z = (u, v), a = (a1,a2), w = (w1, w2) ∈ Hk ⊕ Hk . The Itô formula (see e.g. Theorem 4.17 in
[6]) now yields

eh
(
zm(t)

) = eh
(
zm(0)

) +
t∧τn∫
0

〈
vm(s),bm ∗ [

g
(
u(s)

)
dW

]〉
L2

+
t∧τn∫
0

〈∇um(s),∇bm ∗ v(s)
〉
L2 ds +

t∧τn∫
0

〈
vm(s),�bm ∗ u(s)

〉
L2 ds

+
t∧τn∫
0

〈
vm(s),bm ∗ f

(
u(s)

)〉
L2 ds +

t∧τn∫
0

〈
bm ∗ v(s),h′(um(s)

)〉
L2 ds

+ 1

2

∑
k

t∧τn∫
0

∥∥bm ∗ [
g
(
u(s)

)
ek

]∥∥2
L2 ds, t � 0,

almost surely where (ek) is any ONB in Hμ . Observe that, if s � τn , then, almost surely,〈∇um(s),∇bm ∗ v(s)
〉
L2 = 〈∇bm ∗ u(s),∇bm ∗ v(s)

〉
L2

= −〈
�bm ∗ u(s),bm ∗ v(s)

〉
L2

= −〈
�bm ∗ u(s), vm(s)

〉
L2

by (8.2) and the integration by parts formula, so

eh
(
zm(t)

) = eh
(
zm(0)

) +
t∧τn∫
0

〈
vm(s),bm ∗ [

g
(
u(s)

)
dW

]〉
L2

+
t∧τn∫ 〈

vm(s),bm ∗ f
(
u(s)

)〉
L2 ds +

t∧τn∫ 〈
bm ∗ v(s),h′(um(s)

)〉
L2 ds
0 0



M. Ondreját / J. Differential Equations 248 (2010) 1579–1602 1589
+ 1

2

∑
k

t∧τn∫
0

∥∥bm ∗ [
g
(
u(s)

)
ek

]∥∥2
L2 ds, t � 0, (8.3)

almost surely.

Step 4. Formula (8.3) holds also for h ∈ W 2,∞
loc (R), h(0) = h′(0) = 0 since, if δ is a smooth compactly

supported density on R and δ j(x) = jδ( jx), the functions

h j(x) = δ j ∗ h(x) − xδ j ∗ h′(0) − δ j ∗ h(0), x ∈ R, j � 1,

satisfy h j(0) = h′
j(0) = 0 and h j → h, h′

j → h′ uniformly on bounded sets in R and sup j |h′′
j | is a

locally bounded function on R. In particular,∣∣h j(x) − h(x)
∣∣ � C R |x|2, ∣∣h′

j(x) − h′(x)
∣∣ � C R |x|, |x| � R, j � 1.

So, if we realize that ‖um‖L2(Rd)∩Cb(Rd) is uniformly bounded on every interval [0, T ], h j(um(t)) →
h(um(t)) in L1(Rd) a.s. for every t � 0, h′

j(um(t)) → h′(um(t)) in L2(Rd) a.s. for every t � 0 and

sup
{∥∥h j

(
um(t)

)∥∥
L1(Rd)

+ ∥∥h′
j

(
um(t)

)∥∥
L2(Rd)

: j � 1, t � T
}

< ∞ a.s.

So we may pass to the limit in (8.3) for h j arriving to (8.3) for h.

Step 5. Putting h = F1 + F2 in (8.3) and using (8.2) and Remark A.4, we obtain

e
(
bm ∗ z(t ∧ τn)

) = e
(
bm ∗ z(0)

) +
t∧τn∫
0

〈
bm ∗ v(s),bm ∗ [

g
(
u(s)

)
dW

]〉
L2

+
t∧τn∫
0

〈
bm ∗ v(s),bm ∗ f1

(
u(s)

) + F ′
1

(
bm ∗ u(s)

)〉
L2 ds

+
t∧τn∫
0

〈
bm ∗ v(s),bm ∗ f2

(
u(s)

) + F ′
2

(
bm ∗ u(s)

)〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′
ds

+ 1

2

∑
k

t∧τn∫
0

∥∥bm ∗ [
g
(
u(s)

)
ek

]∥∥2
L2 ds, t � 0, (8.4)

almost surely. This formula is correct since (u, v) ∈ Ḃ
1
2
q ⊕ Ḃ

− 1
2

q for almost all (t,ω) by (7.1) and bm∗ :
Ḃ

± 1
2

q → Ḃ
± 1

2
q by Lemma A.5. Also bm ∗ f2(u) + F ′

2(bm ∗ u) ∈ Ḃ
1
2
q′ for almost all (t,ω) by Lemma A.7. Let

us deal with all terms in (8.4).

Step 6. The term bm ∗ z(t ∧ τn) → z(t ∧ τn) in H1 ⊕ L2 for every (t,ω) so e(bm ∗ z(t ∧ τn)) →
e(z(t ∧ τn)) and e(bm ∗ z(0)) → e(z(0)) for every (t,ω).

Step 7. It holds that ∣∣〈bm ∗ v,bm ∗ [
g(u)ek

]〉
2

∣∣2 � ‖v‖2
2

∥∥g(u)ek
∥∥2

2
L L L
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and

∑
k

τn∫
0

∥∥v(s)
∥∥2

L2

∥∥g
(
u(s)

)
ek

∥∥2
L2 ds = c2

τn∫
0

∥∥v(s)
∥∥2

L2

∥∥g
(
u(s)

)∥∥2
L2 ds < ∞ a.s.

by (4.1) since paths of v are locally bounded in L2 and paths of g(u) are locally L2-integrable in L2

almost surely as shown in Step 1. Thus, by the Lebesgue dominated convergence theorem,

lim
m→∞

∑
k

τn∫
0

∣∣〈bm ∗ v(s),bm ∗ [
g
(
u(s)

)
ek

]〉
L2 − 〈

v(s), g
(
u(s)

)
ek

〉
L2

∣∣2
ds = 0 a.s.,

so

lim
m→∞

{
sup

0�t�T

∣∣∣∣∣
t∧τn∫
0

〈
bm ∗ v(s),bm ∗ [

g
(
u(s)

)
dW

]〉
L2 −

t∧τn∫
0

〈
v(s), g

(
u(s)

)
dW

〉
L2

∣∣∣∣∣
}

= 0

in probability for every T > 0 by Proposition 4.1 in [21].

Step 8. It holds that ∣∣〈bm ∗ v,bm ∗ f1(u) + F ′
1(bm ∗ u)

〉
L2

∣∣ � c‖v‖L2‖u‖L2

as f1, F ′
1 are Lipschitz functions, hence, by the Lebesgue dominated convergence theorem,

lim
m→∞

τn∫
0

∣∣〈bm ∗ v(s),bm ∗ f1
(
u(s)

) + F ′
1

(
bm ∗ u(s)

)〉
L2 − 〈

v(s), f1
(
u(s)

) + F ′
1

(
u(s)

)〉
L2

∣∣ds = 0

on Ω since paths of v and u are locally bounded in L2.

Step 9. It holds that

∣∣〈bm ∗ v,bm ∗ f2(u) + F ′
2(bm ∗ u)

〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′

∣∣ � c̃‖v‖
Ḃ

− 1
2

q

(∥∥ f2(u)
∥∥

Ḃ
1
2

q′
+ ∥∥F ′

2(bm ∗ u)
∥∥

Ḃ
1
2

q′

)
� c‖v‖

Ḃ
− 1

2
q

‖u‖q−1

Ḃ
1
2

q

‖u‖
4

(d−1)(d−2)

H1

by Corollary A.3, Lemmas A.5 and A.7, and

τn∫
0

∥∥v(s)
∥∥

Ḃ
− 1

2
q

∥∥u(s)
∥∥q−1

Ḃ
1
2

q

∥∥u(s)
∥∥ 4

(d−1)(d−2)

H1 ds � ‖v‖
Lq((0,τn);Ḃ

− 1
2

q )

‖u‖q−1

Lq((0,τn);Ḃ
1
2

q )

‖u‖C([0,τn];H1)

which is finite almost surely by (7.1). Next

lim
m→∞

[‖bm ∗ v − v‖
Ḃ

− 1
2

+ ∥∥bm ∗ f2(u) − f2(u)
∥∥

Ḃ
− 1

2

] = 0

q q
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for almost all (t,ω) by Lemmas A.5 and A.7. It also holds that

lim
m→∞

∥∥F ′
2(bm ∗ u) − F ′

2(u)
∥∥

L
2d

d+2 (Rd)
= 0,

so

lim
m→∞

〈
θ, F ′

2(bm ∗ u)
〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′
= 〈

θ, F ′
2(u)

〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′

holds for every θ ∈ ZC and since F ′
2(bm ∗ u) is bounded in Ḃ

1
2
q′ by Lemma A.7 for almost all (t,ω)

and ZC is dense in Ḃ
− 1

2
q by Proposition A.1,

lim
m→∞

〈
v, F ′

2(bm ∗ u)
〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′
= 〈

v, F ′
2(u)

〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′

holds for almost all (t,ω). We have thus proved that

lim
m→∞

τn∫
0

∣∣〈bm ∗ v,bm ∗ f2(u) + F ′
2(bm ∗ u)

〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′
− 〈

v, f2(u) + F ′
2(u)

〉
Ḃ

− 1
2

q ×Ḃ
1
2

q′

∣∣ds = 0

almost surely by the Lebesgue dominated convergence theorem.

Step 10. The inequality ‖bm ∗ [g(u)ek]‖2
L2 � ‖g(u)ek‖2

L2 holds and

∑
k

τn∫
0

∥∥g
(
u(s)

)
ek

∥∥2
L2 ds = c2

τn∫
0

∥∥g(u)
∥∥2

L2 ds < ∞ a.s.

by (4.1) and Step 1, so

lim
m→∞

∑
k

τn∫
0

∣∣∥∥bm ∗ [
g
(
u(s)

)
ek

]∥∥2
L2 − ∥∥g

(
u(s)

)
ek

∥∥2
L2

∣∣ds = 0

almost surely by the Lebesgue dominated convergence theorem. The equality (7.3) is finally proved.

9. Proofs of Theorems 7.5 and 7.6

Let us introduce operators

Tt =
(

K̇t Kt

�Kt K̇t

)
, t ∈ R, (9.1)

where K̇tξ = F−1(
sin(t|x|)

|x| · Fξ) and Ktξ = F−1(cos(t|x|) · Fξ) for ξ ∈ Z ′ . By e.g. Proposition 20

in [22], the linear operators (Tt) form a C0-group on Z ′ ⊕ Z ′ as well as on L2 ⊕ H−1 and the
infinitesimal generator is (

0 I
� 0

)
whose domain is, in the latter case, H1 ⊕ L2.



1592 M. Ondreját / J. Differential Equations 248 (2010) 1579–1602
Lemma 9.1. Let z = (u, v) be a solution defined on [0, τ ) and let ρ be an (Ft)-stopping time such that ρ < τ
a.s. Define

zρ(t) = Tt z(0) +
t∫

0

1[0,ρ)(s)Tt−s

(
0

f (u(s))

)
ds +

t∫
0

1[0,ρ)(s)Tt−s

(
0

g(u(s))

)
dW

for t � 0. Then z(t) = zρ(t) for t ∈ [0,ρ] a.s.

Proof. The integrals converge in L2 ⊕ H−1 by Remark 6.1 and

uρ(t) = u(0) +
t∫

0

vρ(s)ds, (9.2)

vρ(t) = v(0) + �

t∫
0

uρ(s)ds +
t∧ρ∫
0

f
(
u(s)

)
ds +

t∧ρ∫
0

g
(
u(s)

)
dW (9.3)

holds a.s. for every t � 0 where the integral in (9.2) converges in L2 and the integrals in (9.3) converge
in H−1, by the Chojnowska-Michalik theorem (see [4] or Theorem 12 in [21]). Taking the difference
in (6.2), (6.3) and (9.2), (9.3), we get

uρ(t) − u(t) =
t∫

0

vρ(s) − v(s)ds, vρ(t) − v(t) = �

t∫
0

uρ(s) − u(s)ds

for every t � ρ almost surely, hence z(t) = zρ(t) for t ∈ [0,ρ] a.s. by uniqueness of the deterministic
wave equation ψtt = �ψ in the Hilbert space L2 ⊕ H−1. �
9.1. Proof of Theorem 7.5

Introduce (Ft)-stopping times

σ 0
n = n ∧ τ 1

n ∧ τ 2
n ,

σ 1
n = σ 0

n ∧ inf
{

t < τ 1:
∥∥z1(t)

∥∥
H1⊕L2 > n

} ∧ inf
{

t < τ 2:
∥∥z2(t)

∥∥
H1⊕L2 > n

}
,

σ 2
n = σ 1

n ∧ inf
{

t < τ 1 ∧ τ 2:
∥∥u1(t) − u2(t)

∥∥
H1 > 0

}
,

t∗ = inf
{

t < τ 1 ∧ τ 2:
∥∥u1(t) − u2(t)

∥∥
H1 > 0

}
with the convention inf ∅ = ∞, and the process

V (t) =
t∫

0

1[σ 2
n ,σ 1

n ](r)
(
1 + ∥∥u1(r)

∥∥s
Ls + ∥∥u2(r)

∥∥s
Ls

)
dr, t � 0,

where s = 2 d+1
d−2 . The adapted process V has continuous paths almost surely by (7.5), for we may

define an (Ft)-stopping time

ρε = σ 1
n ∧ inf

{
t � 0: V (t) � ε

}
, ε ∈ (0,1).
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We have, for t ∈ [0,n],

E
∥∥u1

ρε
(t) − u2

ρε
(t)

∥∥θ

Lq

� cE

[ t∫
0

1[0,ρε](r)
∥∥Kt−r

(
f
(
u1(r)

) − f
(
u2(r)

))∥∥
Lq dr

]θ

+ cE

[ t∫
0

1[0,ρε](r)
∥∥Kt−r ◦ (

g
(
u1(r)

) − g
(
u2(r)

))∥∥2
L2(Hμ,Lq)

dr

] θ
2

� cE

[ t∫
0

1[0,ρε](r)(t − r)−
d−1
d+1

∥∥u1(r) − u2(r)
∥∥

Lq

(
1 + ∥∥u1(r)

∥∥ 4
d−2
Ls + ∥∥u2(r)

∥∥ 4
d−2
Ls

)
dr

]θ

+ cE

[ t∫
0

1[0,ρε](r)(t − r)−
2
s
∥∥u1(r) − u2(r)

∥∥2
Lq

(
1 + ∥∥u1(r)

∥∥ 6
d−2
Ls + ∥∥u2(r)

∥∥ 6
d−2
Ls

)
dr

] θ
2

= cE

[ t∫
0

1[σ 2
n ,ρε](r)(t − r)−

d−1
d+1

∥∥u1(r) − u2(r)
∥∥

Lq

(
1 + ∥∥u1(r)

∥∥ 4
d−2
Ls + ∥∥u2(r)

∥∥ 4
d−2
Ls

)
dr

]θ

+ cE

[ t∫
0

1[σ 2
n ,ρε](r)(t − r)−

2
s
∥∥u1(r) − u2(r)

∥∥2
Lq

(
1 + ∥∥u1(r)

∥∥ 6
d−2
Ls + ∥∥u2(r)

∥∥ 6
d−2
Ls

)
dr

] θ
2

by the Burkholder inequality (see e.g. [21]), Lemma A.9 and Proposition A.11. Here c = cd,n, f ,g,μ,θ

may differ from step to another. Choosing θ ∈ (s,∞) we can use Lemma A.12 to obtain

E

n∫
0

∥∥u1
ρε

(t) − u2
ρε

(t)
∥∥θ

Lq dt � cE

[ ∞∫
0

1[σ 2
n ,ρε](r)

∥∥u1(r) − u2(r)
∥∥θ

Lq dr

][
V (ρε)

2θ
d+1 + V (ρε)

3θ
2(d+1)

]

� cε
3θ

2(d+1) E

[ ∞∫
0

1[σ 2
n ,ρε](r)

∥∥u1(r) − u2(r)
∥∥θ

Lq dr

]
,

so

E

ρε∫
σ 2

n

∥∥u1(r) − u2(r)
∥∥θ

Lq dr = 0 (9.4)

for small ε as ui = ui
ρε

on [0,ρε] by Lemma 9.1. Hence u1 = u2 on [0,ρε] by (9.4) which yields

t∗ � ρε , consequently σ 1
n � t∗ (otherwise, by definition, σ 2

n = t∗ and V (ρε) = ε so it would hold that

V ≡ 0 on [0, σ 2
n ] = [0, t∗] hence ρε > t∗). But σ 1

n ↑ τ 1 ∧ τ 2.
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9.2. Proof of Theorem 7.6

The process zn = (un, vn) = 1[‖z(0)‖H1⊕L2 �n]z defined on [0, τ ) is a solution of (6.1) since f (0) =
g(0) = 0. Introduce the (Ft)-stopping times

σ 0
n = inf

{
t < τ :

∥∥zn(t)
∥∥

H1⊕L2 > n
}
,

σ 1
n = inf

{
t < τ :

t∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr > n

}
,

ρn = n ∧ τn ∧ σ 0
n ∧ σ 1

n

with the convention inf ∅ = ∞, and a process Zn = (Un, V n)

Zn(t) = Tt zn(0) +
t∫

0

1[0,ρn)(s)Tt−s

(
0

f (un(s))

)
ds +

t∫
0

1[0,ρn)(s)Tt−s

(
0

g(un(s))

)
dW

for t � 0. We obtain, with the constant c changing from line to line and depending on d, n, q, μ, f
and g , the inequality

E

n∫
0

∥∥V n(t)
∥∥q

Ḃ
− 1

2
q

dt � cE

n∫
0

∥∥Tt zn(0)
∥∥q

Ḃ
1
2

q ⊕Ḃ
− 1

2
q

dt

+ cE

n∫
0

[ t∫
0

1[0,ρn)(r)
∥∥K̇t−r

(
f
(
un(r)

))∥∥
Ḃ

− 1
2

q

dr

]q

dt

+ cE

n∫
0

[ t∫
0

1[0,ρn)(r)
∥∥K̇t−r ◦ g

(
un(r)

)∥∥2

L2(Hμ,Ḃ
− 1

2
q )

dr

] q
2

dt

= I1 + I2 + I3

by the Burkholder inequality (see e.g. (5.1) in [21]) as Ḃ
− 1

2
q is a 2-smooth Banach space by Propo-

sition A.1. Decomposing f = f0 + f1 and g = g0 + g1 so that f i , gi are locally Lipschitz functions
for i = 1,2 such that f0, g0 are compactly supported and f = f0, g = g0 on a neighborhood around
0 ∈ R. Then

I1 � cE
∥∥zn(0)

∥∥q
H1⊕L2 � cnq

by Proposition A.10. If r < ρn then∥∥K̇t−r
(

f0
(
un(r)

))∥∥
Ḃ

− 1
2

q

� c
∥∥un(r)

∥∥
H1 � cn,

∥∥K̇t−r
(

f1
(
un(r)

))∥∥
Ḃ

− 1
2

q

� c|t − r|− d−1
d+1

∥∥un(r)
∥∥q−1

Ḃ
1
2

q

∥∥un(r)
∥∥ 4

(d−2)(d−1)

L
2d

d−2

� c|t − r|− d−1
d+1

∥∥un(r)
∥∥q−1

Ḃ
1
2

q
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by Lemma A.8. Hence

I2 � c + cE

( ρn∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr

)q−1

� c

by the Hardy–Littlewood–Sobolev inequality. If r < ρn then

∥∥K̇t−r ◦ g0
(
un(r)

)∥∥2

L2(Hμ,Ḃ
− 1

2
q )

� c

∫
Rd

∥∥K̇t−r
(
ei〈y,·〉g0

(
un(r)

))∥∥2

Ḃ
− 1

2
q

μ(dy)

� c

∫
Rd

(
1 + |y| 2

q
)∥∥un(r)

∥∥2
H1 μ(dy) � cn2,

∥∥K̇t−r ◦ g1
(
un(r)

)∥∥2

L2(Hμ,Ḃ
− 1

2
q )

� c

∫
Rd

∥∥K̇t−r
(
ei〈y,·〉g1

(
un(r)

))∥∥2

Ḃ
− 1

2
q

μ(dy)

� c

∫
Rd

|t − r|−2w
∥∥un(r)

∥∥2+q(1−2w)

Ḃ
1
2

q

∥∥un(r)
∥∥ 6

d−2 −q(1−2w)

2d
d−2

μ(dy)

+ c

∫
Rd

|t − r|−2w |y|2( 1
q + w

d−1 )
∥∥un(r)

∥∥q(1− 2dw
d−1 )

Ḃ
1
2

q

∥∥un(r)
∥∥2 d−1

d−2 −q(1− 2dw
d−1 )

2d
d−2

μ(dy)

� c|t − r|−2w[∥∥un(r)
∥∥2+q(1−2w)

Ḃ
1
2

q

+ ∥∥un(r)
∥∥q(1− 2dw

d−1 )

Ḃ
1
2

q

]
(9.5)

by Proposition A.11 and Lemma A.8 where 1
q < w < d−1

2d is chosen so that 2( 1
q + w

d−1 ) < d
d+1 + ε.

Hence

I3 � c + cE

[ ρn∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr

] q
2a

+ cE

[ ρn∫
0

∥∥un(r)
∥∥qθ

Ḃ
1
2

q

dr

] q
2a

� c + cE

[ ρn∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr

] q
2a

+ cE

[ ρn∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr

] qθ
2a

� c

by the Hardy–Littlewood–Sobolev inequality where a ∈ R satisfies 2w + 1
a = 1+ 2

q and θ = q(1− 2dw
d−1 )

2+q(1−2w)
∈

(0,1). This result with Lemma 9.1 imply that

E

ρn∫ ∥∥vn(r)
∥∥q

Ḃ
− 1

2
q

dr < ∞

0
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as ρn � n and vn = V n on [0,ρn] a.s., hence

1[‖z(0)‖H1⊕L2 �n]

ρn∫
0

∥∥v(r)
∥∥q

Ḃ
− 1

2
q

dr =
ρn∫

0

∥∥vn(r)
∥∥q

Ḃ
− 1

2
q

dr < ∞ a.s.

and we get the result from the fact that limρn = τ a.s.

Remark 9.2. As far as Remark 7.7 is concerned, the proof of Theorem 7.6 must be modified in the
inequality (9.5) which goes, for r < ρn , as

∥∥K̇t−r ◦ g1
(
un(r)

)∥∥2

L2(Hμ,Ḃ
− 1

2
q )

� c

∫
Rd

∥∥K̇t−r
(
ei〈y,·〉g1

(
un(r)

))∥∥2

Ḃ
− 1

2
q

μ(dy)

� c

∫
Rd

[∥∥un(r)
∥∥2

Ḃ
1
2

q

∥∥un(r)
∥∥ 4

d−2
2d

d−2

+ |y| 2
q
∥∥un(r)

∥∥ 2d
d−2
2d

d−2

]
μ(dy)

� c
(
1 + ∥∥un(r)

∥∥2

Ḃ
1
2

q

)
by Proposition A.11 and Lemma A.8. Hence

I3 � c + cE

ρn∫
0

∥∥un(r)
∥∥q

Ḃ
1
2

q

dr � c.

Acknowledgments

The author acknowledges Jan Seidler’s help with the redaction of the paper as well as discussions
with him on the topic of wave equations with critically growing nonlinearities. The author also wishes
to thank the referee for careful attention to the paper and essential remarks and suggestions that have
made the exposition more clear and flawless.

Appendix A. Homogeneous Besov spaces

A.1. Basic properties

Let us introduce the vector space

Z = {
ϕ ∈ SC: Dαϕ̂(0) = 0, α ∈ Nd

0

}
=

{
ϕ ∈ SC:

∫
Rd

xαϕ(x)dx = 0, α ∈ Nd
0

}

that we equip with the topology of SC , and let Z ′ be its dual space. It can be shown (see 5.1.2
in [30]) that every T ∈ Z ′ can be extended to a distribution S ∈ S ′

C
, i.e. T ⊆ S , and any other

distribution S̃ ∈ SC extends T if and only if S̃ − S is a polynomial. Hence Z ′ is isomorphic to
SC/P where P denotes the space of polynomials. Moreover, if φ j ∈ C∞(Rd) are real functions
with supports in {2 j−1 < |x| < 2 j+1} and

∑
j∈Z

φ j = 1 on Rd \ {0} then we define
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‖T ‖Ḃs
r
=

{∑
j∈Z

22 js
∥∥T ∗ F−1φ j

∥∥2
Lr(Rd)

} 1
2

, T ∈ Z ′,

Ḃs
r = {

T ∈ Z ′: ‖T ‖Ḃs
r
< ∞}

(A.1)

for s ∈ R, 1 � r � ∞ where F and F−1 are the Fourier and the inverse Fourier transformations,
respectively.

Proposition A.1. Let s ∈ R. The space (Ḃs
r,‖ · ‖Ḃs

r
) is a Banach space for 1 � r � ∞ which is separable if 1 �

r < ∞, reflexive if 1 < r < ∞ and 2-smooth if 2 � r < ∞. Moreover, Z is dense in Ḃs
r and Ḃ−s

r′ = (Z ,‖·‖Ḃs
r
)∗

if 1 � r < ∞.

Proof. See Theorem 5.1.5 in [30] for completeness, density of Z and separability. The space Ḃs
r is re-

flexive, resp. 2-smooth as it is isomorphic with a closed subspace of l2(Z; Lr) and the duality between
Ḃ−s

r′ = (Ḃs
r)

∗ can be proved analogously to the proof of Theorem 2.11.2 in [30]. �
Remark A.2. The space Z is dense in Lr for 1 < r < ∞. See Theorems 5.2.3/1 and 5.1.5 in [30].

Corollary A.3. Let 1 � r < ∞. The bilinear form defined by the dual pairing

Ḃ−s
r′ × Z → C : (S,ϕ) �→ 〈S,ϕ〉

extends in a unique way to a continuous bilinear form

Ḃ−s
r′ × Ḃs

r → C : (S, T ) �→ 〈S, T 〉Ḃ−s
r′ ×Ḃs

r
.

Proof. This is a consequence of the duality Ḃ−s
r′ = (Z ,‖ · ‖Ḃs

r
)∗ (see Proposition A.1). �

Remark A.4. If 1 � r < ∞, h1 ∈ L2 ∩ Ḃ−s
r′ , h2 ∈ L2 ∩ Ḃs

r then

〈h1,h2〉Ḃ−s
r′ ×Ḃs

r
=

∫
Rd

h1(x)h2(x)dx.

This equality follows from density of Z in Ḃa
b ∩ L2 for any a ∈ R and 1 � b < ∞ which can be proved

by the same procedure as was used in the proof of Theorem 5.1.5 in [30], cf. Theorem 2.3.3 in [30].

Lemma A.5. Let r,a,b ∈ [1,∞] and s ∈ R satisfy

1

a
+ 1

b
= 1 + 1

r
.

Then

‖S ∗ ϕ‖Ḃs
r
� min

{‖S‖Ḃs
a
‖ϕ‖Lb(Rd),‖ϕ‖Ḃs

a
‖S‖Lb(Rd)

}
holds for any tempered distribution S ∈ S ′

C
and for any ϕ ∈ SC . If ϕ is a smooth compactly supported density

on Rd, ϕn(x) = ndϕ(nx) and 1 � r < ∞ then

lim
n→∞‖S ∗ ϕn − S‖Ḃs

r
= 0, S ∈ S ′

C
∩ Ḃs

r .



1598 M. Ondreját / J. Differential Equations 248 (2010) 1579–1602
Proof. The inequality∥∥(S ∗ ϕ) ∗ F−1φ j
∥∥

Lr = ‖S ∗ F−1φ j ∗ ϕ‖Lr � min
{‖S ∗ F−1φ j‖La‖ϕ‖Lb ,‖ϕ ∗ F−1φ j‖La‖S‖Lb

}
holds by the Young inequality. In the second case,∥∥(S ∗ ϕn) ∗ F−1φ j − S ∗ F−1φ j

∥∥
Lr = ∥∥(S ∗ F−1φ j) ∗ ϕn − S ∗ F−1φ j

∥∥
Lr

converges to zero as n → ∞ and is bounded by 2‖S ∗F−1φ j‖Lr . Hence the second claim follows from
the Lebesgue dominated convergence theorem. �
A.2. Measurability in homogeneous Besov spaces

Proposition A.6. Let 1 � r < ∞, s ∈ R, let (X, X ) be a measure space and let S : X → Z ′ be such that 〈S,ϕ〉
is X -measurable for every ϕ ∈ Z . Then A = {x ∈ X: S(x) ∈ Ḃs

r} ∈ X and 1A S : Ω → Ḃs
r is Borel measurable.

Proof. Let T ∈ Ḃs
r . The mapping X × Rd → C : (x, z) �→ (Sx − T ) ∗ F−1φ j(z) is X -measurable in the

first variable and continuous in the second one, hence, by the Carathéodory theorem, it is jointly
measurable. Consequently, x �→ ‖(Sx − T ) ∗ F−1φ j‖Lr is X -measurable and so x �→ ‖Sx − T ‖Ḃs

r
is X -

measurable. In particular, A ∈ X . The sets {x: 1A Sx ∈ K } belong to X if K is a ball in Ḃs
r and, since

Ḃs
r is separable by Proposition A.1, 1A S : X → Ḃs

r is Borel measurable. �
A.3. Transformations in homogeneous Besov and Lebesgue spaces

We use the classical notation

α(r) = 1

2
− 1

r
, β(r) = d + 1

2
α(r), γ (r) = (d − 1)α(r), δ(r) = dα(r)

and the convention ‖u‖Lt = (
∫

Rd |u|t dx)
1
t for t > 0.

Lemma A.7. Let q = 2 d+1
d−1 , s ∈ R such that 1 � δ(s) � 3d+1

2(d+1)
, a ∈ (0,∞), r ∈ [2,∞), p ∈ (0, 1

2 ], b =
ad

1
2 +δ(r)+δ(q)−p

, θ = q(δ(s) − 1) and h : R → R be a locally Lipschitz function satisfying h(0) = 0 and

|h′(t)| � c|t|a for a.e. t ∈ R. Then there exists C < ∞ such that

‖u‖Ls � C‖u‖θ

Ḃ
1
2

q

‖u‖1−θ

L
2d

d−2
,

∥∥h(u)
∥∥

Ḃ p
r′

� C‖u‖
Ḃ

1
2

q

‖u‖a
Lb

hold for every u ∈ H1(Rd). If a = 0 then ‖h(u)‖Ḃ p
2

� c‖u‖H1 holds for every u ∈ H1(Rd).

Proof. Let a > 0. Then Lemma 3.2 in [11] implies that∥∥h(u)
∥∥

Ḃ p
r′

� c‖u‖Ḃ p
t
‖u‖a

Lb

holds for every u ∈ H1(Rd) where t ∈ [q,∞) is chosen such that p + δ(t) = 1
2 + δ(q), and ‖u‖Ḃ p

t
�

‖u‖
Ḃ

1
2

by the Sobolev embedding (A.12) in [11]. It holds that Ḃ
1
2
q ⊆ Ḃ0

c ⊆ Lc where c = 2d(d+1)

d2−2d−1
by
q
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the Sobolev embedding (e.g. Lemma A.2 in [11]), the generalized Minkowski inequality and Theo-
rem 5.2.3/1 in [30]. Hence, by the Riesz–Thorin interpolation,

‖u‖Ls � ‖u‖θ
Lc ‖u‖1−θ

L
2d

d−2
� c1‖u‖θ

Ḃ
1
2

q

‖u‖1−θ

L
2d

d−2
.

If a = 0 then Lemma 3.2 in [11] implies that ‖h(u)‖Ḃ p
2

� c‖u‖Ḃ p
2

and

‖u‖Ḃ p
2

� c0‖u‖1−p
Ḃ0

2
‖u‖p

Ḃ1
2
� c1‖u‖1−p

L2 ‖u‖p
Ḣ1 � c‖u‖H1

by interpolation and the fact that Ḃ0
2 = L2 and Ḃ1

2 = Ḣ1 e.g. by Theorem 5.2.3/1 and Remark 5.2.3/1
in [30]. �
Lemma A.8. Let q = 2 d+1

d−1 , 0 � w � d−1
d+1 , a ∈ [0,∞), h : R → R be a locally Lipschitz function such that

h(0) = 0 and |h′(t)| � c|t|a for a.e. t ∈ R. There exists a constant C such that∥∥Kt
(
ei〈y,·〉h(u)

)∥∥
Ḃ

1
2

q

+ ∥∥K̇t
(
ei〈y,·〉h(u)

)∥∥
Ḃ

− 1
2

q

� C
(‖u‖H1 + |y| 1

q ‖u‖L2

)
holds for every u ∈ H1 , t ∈ R and y ∈ Rd if a = 0 (the case w = 0),

∥∥Kt
(
h(u)

)∥∥
Ḃ

1
2

q

+ ∥∥K̇t
(
h(u)

)∥∥
Ḃ

− 1
2

q

� C |t|− d−1
d+1 ‖u‖q−1

Ḃ
1
2

q

‖u‖
4

(d−2)(d−1)

L
2d

d−2

holds for every u ∈ H1 and t ∈ R if a = 4
d−2 (the case w = d−1

d+1 and y = 0),

∥∥Kt
(
ei〈y,·〉h(u)

)∥∥
Ḃ

1
2

q

+ ∥∥K̇t
(
ei〈y,·〉h(u)

)∥∥
Ḃ

− 1
2

q

� C |t|−w‖u‖1+q( 1
2 −w)

Ḃ
1
2

q

‖u‖
3

d−2 −q( 1
2 −w)

L
2d

d−2

+ C |t|−w |y| 1
q + w

d−1 ‖u‖q( 1
2 − dw

d−1 )

Ḃ
1
2

q

‖u‖
d+1
d−2 −q( 1

2 − dw
d−1 )

L
2d

d−2

holds for every u ∈ H1 , t ∈ R if a = 3
d−2 , 1

q � w � d−1
2d and y ∈ Rd, and

∥∥Kt
(
ei〈y,·〉h(u)

)∥∥
Ḃ

1
2

q

+ ∥∥K̇t
(
ei〈y,·〉h(u)

)∥∥
Ḃ

− 1
2

q

� C
(‖u‖

Ḃ
1
2

q

‖u‖
2

d−2

L
2d

d−2
+ |y| 1

q ‖u‖
d

d−2

L
2d

d−2

)
holds for every y ∈ Rd, u ∈ H1 and t ∈ R if a = 2

d−2 (the case w = 0).

Proof. Let us define Iσ ξ = F−1{|x|σ · Fξ} and Uσ ξ = F−1{eit|x| · Fξ} for σ ∈ R and ξ ∈ Z ′ . Then,
for r ∈ R such that w = γ (r),

‖Utξ‖
Ḃ

− 1
2

q

� c0‖Utξ‖Ḃs
r
� c1

∥∥Ut(Is+β(r)ξ )
∥∥

Ḃ−β(r)
r

� c3|t|−w‖Is+β(r)ξ‖
Ḃβ(r)

r′

� c4|t|−w‖ξ‖Ḃ p
r′
, t �= 0, ξ ∈ Z ′,

holds by (A.12) in [11], Theorem 5.2.3/1(i) in [30] and the inequality (3.14) in [10] where s = δ(q) −
δ(r)− 1

2 = 1
q − dw

d−1 and p = s + 2β(r) = 1
q + w

d−1 ∈ [ 1
q , 1

2 ]. Applying Lemma 3.2 in [11] and Lemma A.7,
we get
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∥∥ei〈y,·〉h(u)
∥∥

Ḃ p
r′

� c5
(∥∥h(u)

∥∥
Ḃ p

r′
+ |y|p

∥∥h(u)
∥∥

Lr′
)

� c6
(‖u‖

Ḃ
1
2

q

‖u‖a

L
ad

1+w
+ |y|p‖u‖a+1

L(a+1)r′
)

if a > 0 and the result now follows from the Riesz–Thorin interpolation part of Lemma A.7. If a =
w = 0 then r = 2 and so ∥∥ei〈y,·〉h(u)

∥∥
Ḃ p

2
� c5

(∥∥h(u)
∥∥

Ḃ p
2

+ |y|p
∥∥h(u)

∥∥
L2

)
� c6

(‖u‖H1 + |y|p‖u‖L2

)
by Lemma A.7. �
Lemma A.9. Let q = 2 d+1

d−1 , s = 2 d+1
d−2 and let hi : R → R, i = 1,2, be locally Lipschitz functions satisfying

hi(0) = 0, |h′
1(t)| � c(1 + |t| 4

d−2 ) and |h′
2(t)| � c(1 + |t| 3

d−2 ) for a.e. t ∈ R. Then

∥∥Kt
(
h1(ϕ1) − h1(ϕ2)

)∥∥
Lq � c

(|t| + |t|− d+1
d−1

)‖ϕ1 − ϕ2‖Lq
(
1 + ‖ϕ1‖

4
d−2
Ls + ‖ϕ2‖

4
d−2
Ls

)
,∥∥Kt

(
ei〈y,·〉[h2(ϕ1) − h2(ϕ2)

])∥∥
Lq � c

(|t| + |t|− 1
s
)‖ϕ1 − ϕ2‖Lq

(
1 + ‖ϕ1‖

3
d−2
Ls + ‖ϕ2‖

3
d−2
Ls

)
hold for every t �= 0, ϕi ∈ H1 and y ∈ Rd where Kt was defined in (9.1).

Proof. See (3.44) and (3.45) in [11] for the first inequality and Lemma 27 in [22] for the second
one. �
Proposition A.10. Let q = 2 d+1

d−1 and consider the operators (Tt) introduced in (9.1). Then there exists a con-
stant C < ∞ such that

∞∫
−∞

‖Tt z‖q

Ḃ
1
2

q ⊕Ḃ
− 1

2
q

dt � C‖z‖q
H1⊕L2

holds for every z ∈ H1 ⊕ L2 .

Proof. See Proposition 3.1 in [10]. �
Proposition A.11. Let 2 � r < ∞, s ∈ R and let X ∈ {Lr, Ḃs

r}. Then there exists a constant cr < ∞ such that

‖O‖2
L2(Hμ,X) � cr(2π)−d

∫
Rd

∥∥O
(
ei〈y,·〉)∥∥2

X μ(dy)

holds, provided that the right-hand side is finite, for any operator O : Cb → Z ′ defined as

Oξ = F−1
{
m · F (h · ξ)

}
, ξ ∈ Cb,

where h is a real tempered function on Rd and m ∈ C∞(Rd \ {0}) satisfies∣∣Dαm(x)
∣∣ � cα

(|x|−nα + |x|nα
)
, x �= 0,

for every multiindex α and some nα ∈ N.



M. Ondreját / J. Differential Equations 248 (2010) 1579–1602 1601
Proof. See Theorem 28 in [22]. �
Lemma A.12 (Hardy–Littlewood–Sobolev). Let a ∈ (0,1) and r ∈ ( 1

a ,∞). Then there exists c < ∞ such that

∞∫
−∞

( ∞∫
−∞

|t − s|−aϕ(s)ψ(s)ds

)r

dt � c‖ϕ‖r
Lr(R)‖ψ‖r

L
1

1−a (R)

holds for every measurable nonnegative functions ϕ , ψ .

Proof. It holds that 0 < 1 + 1
r − a < 1 so there exists 1 < p < ∞ such that a + 1

p = 1 + 1
r . Hence, by

the Hardy–Littlewood–Sobolev theorem, we get

∞∫
−∞

( ∞∫
−∞

|t − s|−aϕ(s)ψ(s)ds

)r

dt � c‖ϕψ‖r
L p(R) � c‖ϕ‖r

Lr(R)‖ψ‖r

L
1

1−a (R)

. �
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