
Evaluating Causal e�ets using Chain Event GraphsPeter Thwaites and Jim SmithUniversity of Warwik Statistis DepartmentCoventry, United KingdomAbstratThe Chain Event Graph (CEG) is a oloured mixed graph used for the representationof �nite disrete distributions. It an be derived from an Event Tree (ET) togetherwith a set of equivalene statements relating to the probabilisti struture of the ET.CEGs are espeially useful for representing and analysing asymmetri proesses, andolletions of implied onditional independene statements over a variety of funtionsan be read from their topology. The CEG is also a valuable framework for expressingausal hypotheses, and manipulated-probability expressions analogous to that givenby Pearl in his Bak Door Theorem an be derived. The expression we derive hereis valid for a far larger set of interventions than an be analysed using Bayesian Net-works (BNs), and also for models whih have insuÆient symmetry to be desribedadequately by a Bayesian Network.1 IntrodutionBayesian Networks are good graphial repre-sentations for many disrete joint probabil-ity distributions. However, many asymmet-ri models (by whih we mean models withnon-symmetri sample spae strutures) an-not be fully desribed by a BN. Suh pro-esses arise frequently in, for example, bio-logial regulation, risk analysis and Bayesianpoliy analysis.In eliiting these models it is usually sen-sible to start with an Event Tree (Shafer,1996), whih is essentially a desription ofhow the proess unfolds rather than how thesystem might appear to an observer. Work-ing with an ET an be quite umbersome, butthey do reet any model asymmetry, bothin model development and in model samplespae struture.The Chain Event Graph (Riomagno &Smith, 2005; Smith & Anderson, 2006;Thwaites & Smith, 2006a) is a graphialstruture designed for analysis of asymmetrisystems. It retains the advantages of the ET,whilst typially having far fewer edges andverties. Moreover, the CEG an be read fora rih olletion of onditional independeneproperties of the model. Unlike Jaeger's veryuseful Probabilisti Deision Graph (2002)

this inludes all the properties that an beread from the equivalent BN if the CEG rep-resents a symmetri model and far more if themodel is asymmetri.In the next setion we show how CEGsan be onstruted. We then desribe how wean use CEGs to analyse the e�ets of Causalmanipulation.Bayesian Networks are often extended toapply also to a ontrol spae. When it is validto make this extension the BN is alled ausal.Although there is debate (Pearl, 2000; Lau-ritzen, 2001; Dawid, 2002) about terminol-ogy, it is ertainly the ase that BNs are use-ful for analysing (in Pearl's notation) the ef-fets of manipulations of the form Do X = x0in symmetri models, where X is a variableto be manipulated and x0 the setting thatthis variable is to be manipulated to. Thistype of intervention, whih might be termedatomi, is atually a rather oarse manipula-tion sine we would need to extend the spaeto make preditions of e�ets when X is ma-nipulated to any value. Although there isa ase for only onsidering suh manipula-tions when a model is very symmetri, it istoo oarse to apture many of the manipu-lations we might want to onsider in asym-metri environments. We use this paper toshow how CEGs an be used to analyse a far



more re�ned singular manipulation in modelswhih may have insuÆient symmetry to bedesribed adequately by a Bayesian Network.2 CEG onstrutionWe an produe a CEG from an Event Treewhih we believe represents the model (see forexample Figure 1). This ET is just a graph-ial desription of how the proess unfolds,and the set of atoms of the Event Spae (orpath sigma algebra) of the tree is simply theset of root to leaf paths within the tree. Anyrandom variables de�ned on the tree are mea-sureable with respet to this path sigma alge-bra.
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14Figure 1. ET for mahine example.Example 1.A mahine in a prodution line utilises tworeplaeable omponents A and B. Faults inthese omponents do not automatially ausethe mahine to fail, but do a�et the qual-ity of the produt, so the mahine inorpo-rates an automated monitoring system, whihis ompletely reliable for �nding faults in A,but whih an detet a fault in B when it isfuntioning orretly.In any monitoring yle, omponent A isheked �rst, and there are three initial pos-sibilities: A, B heked and no faults found

(�1 on the ET in Figure 1); A heked, faultfound, mahine swithed o� (�2); A heked,no fault found, B heked, fault found, ma-hine swithed o� (�3).If A is found faulty it is replaed and themahine swithed bak on (vertex v1), andB is then heked. B is then either foundnot faulty (�4), or faulty and the mahineswithed o� (�5).If B is found faulty by the monitoring sys-tem, then it is removed and heked (vertiesv2 and v3). There are then three possibili-ties, whose probabilities are independent ofwhether or not omponent A has been re-plaed: B is not in fat faulty, the mahineis reset and restarted (�6); B is faulty, is su-essfully replaed and the mahine restarted(�7); B is faulty, is replaed unsuessfullyand the mahine is left o� until the engineeran see it (�8).At the time of any monitoring yle, thequality of the produt produed (�10) is un-a�eted by the replaement of A unless B isalso replaed. It is however dependent on thee�etiveness of B whih depends on its age,but also, if it is a new omponent, on the ageof A; so:�(good produt j A and B replaed) = �12> �(good produt j only B replaed) = �14> �(good produt j B not replaed) = �10An ET for this set-up is given in Figure 1 anda derived CEG in Figure 2. Note that:� The subtrees rooted in the verties v4; v5;v6 and v8 of the ET are idential (bothin physial struture and in probabilitydistribution), so these verties have beenonjoined into the vertex (or position) w4in the CEG.� The subtrees rooted in v2 and v3 are notidential (as �11 6= �13; �12 6= �14), butthe edges leaving v2 and v3 arry identialprobabilities. The equivalent positions inthe CEG w2 and w3 have been joined byan undireted edge.� All leaf-verties of the ET have been on-joined into one sink-vertex in the CEG,labelled w1.To omplete the transformation, note thatvi ! wi for 0 � i � 3, v7 ! w5 and v9 ! w6.
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π 7Figure 2. CEG for mahine example.A formal desription of the proess is as fol-lows: Consider the ET T = (V (T ); E(T ))where eah element of E(T ) has an assoi-ated edge probability. Let S(T ) � V (T ) bethe set of non-leaf verties of the ET.Let vi � vj indiate that there is a path join-ing verties vi and vj in the ET, and that vipreedes vj on this path.Let X(v) be the sample spae of X(v), therandom variable assoiated with the vertex v(X(v) an be thought of as the set of edgesleaving v, so in our example, X(v1) =fB found not faulty;B found faultyg).For any v 2 S(T ), vl 2 V (T )nS(T ) suh thatv � vl :� Label v = v�0� Let v�i+1 be the vertex suh thatv�i � v�i+1 � vl for whih there is novertex v0 suh that v�i � v0 � v�i+1 fori � 0� Label vl = v�m, where the path � onsistsof m edges of the form e(v�i; v�i+1)De�nition 1. For any v1; v2 2 S(T ), v1 andv2 are termed equivalent, i� there is a bije-tion  whih maps the set of paths (and om-ponent edges)�1 = f�1(v1; vl1) j vl1 2 V (T )nS(T )g onto�2 = f�2(v2; vl2) j vl2 2 V (T )nS(T )g in suha way that:

(a)  (e(v�1 i; v�1 i+1)) = e( (v�1 i);  (v�1 i+1))= e(v�2 i; v�2 i+1) for 0 � i � m(�)(b) �(v�1 i+1 j v�1 i) = �(v�2 i+1 j v�2 i)where v�1 i+1 and v�2 i+1 label the same valueon the sample spaes X(vi�1 ) and X(vi�2 ) fori � 0.The set of equivalene lasses indued bythe bijetion  is denoted K(T ), and the ele-ments of K(T ) are alled positions.De�nition 2. For any v1; v2 2 S(T ), v1 andv2 are termed stage-equivalent, i� there is abijetion � whih maps the set of edgesE1 = fe1(v1; v1 0) j v10 2 X(v1)g ontoE2 = fe2(v2; v2 0) j v20 2 X(v2)g in suha way that:�(v10 j v1) = �(�(v10) j �(v1)) = �(v20 j v2)where v10 and v20 label the same value on thesample spaes X(v1) and X(v2).The set of equivalene lasses indued bythe bijetion � is denoted L(T ), and the ele-ments of L(T ) are alled stages.A CEG C(T ) of our model is onstruted asfollows:(1) V (C(T )) = K(T ) [ fw1g(2) Eah w;w0 2 K(T ) will orrespond to aset of v; v0 2 S(T ). If, for suh v; v0, 9a direted edge e(v; v0) 2 E(T ), then 9 adireted edge e(w;w0) 2 E(C(T ))(3) If 9 an edge e(v; vl) 2 E(T ) st v 2 S(T )



and vl 2 V (T )nS(T ), then 9 a diretededge e(w;w1) 2 E(C(T ))(4) If two verties v1; v2 2 S(T ) are stage-equivalent, then 9 an undireted edgee(w1; w2) 2 E(C(T ))(5) If w1 and w2 are in the same stage (ie: ifv1; v2 are stage-equivalent in E(T )), andif �(v10 j v1) = �(v20 j v2) then the edgese(w1; w1 0) and e(w2; w2 0) have the samelabel or olour in E(C(T )).Note that in our example, w2 and w3 are inthe same stage and that �(v6jv2) = �(v8jv3),�(v7jv2) = �(v9jv3), �(v18jv2) = �(v23jv3), sothe edges e(w2; w4) and e(w3; w4) areoloured the same, as are the edges e(w2; w5)and e(w3; w6) and as are e(w2; w1) ande(w3; w1).More detail on CEG onstrution an befound in Smith & Anderson (2006), as ana detailed desription of how CEGs are read.We onlude setion 2 of this paper by lookingat two ideas that will be used extensively inthe next setion.Firstly, when we say that a position win our CEG or the set of edges leaving whave an assoiated variable, we are not refer-ing to the measurement-variables of a BN-representation of the problem, eah of whihmust take a value for any atomi event, butto a more exible onstrut de�ned throughstage-equivalene in the underlying tree. Theexit-edges of a position are simply the olle-tion of possible immediate outomes in thenext step of the proess given the history upto that position. A setting (or value or level)is then simply a possible realisation of a vari-able in this olletion.Seondly, we use these edge probabilitiesto de�ne the probabilities of omposite eventsin the path sigma �eld of our CEG:De�nition 3. For two positions w;w0 withw � w0, let ��(w0 j w) be the probability as-soiated with the path �(w;w0). Note thatthis will be a produt of edge probabilities.De�ne �(w0 j w) ,X�2� ��(w0 j w)where � is the set of all paths from w to w0.

Note that the ombination rules for pathprobabilities on CEGs (diretly analogous tothose for trees) give us that for any 3 posi-tions w1; w2; w3, with w1 � w2 � w3, we havethat �(w3 j w1; w2) = �(w3 j w2); that is theprobability that we pass through position w3given that we have passed through positionsw1 and w2 is simply the probability that wepass through position w3 given that we havepassed through position w2.3 Manipulations of CEGsThe simplest types of intervention are of theform Do X = x0 for some variable X andsetting x0, and these are really the only in-terventions that an be satisfatorily analysedusing BNs. In this paper we onsider a muhmore general intervention where not only thesetting of the manipulated variable, but thevariable itself may be di�erent depending onthe settings of other variables within the sys-tem.We an model suh interventions by theprodution of a manipulated CEG Ĉ in par-allel with our idle CEG C. In the interven-tion onsidered here every path in our CEG ismanipulated by having one omponent edgegiven a probability of 1 or 0. All edges withzero probabilities and branhes stemmingfrom suh edges are removed (or pruned) fromĈ (note that in this paper all edges on anyCEG will have non-zero probabilities). Wewill all suh an intervention a singular ma-nipulation, and denote it Do Int.De�nition 4. A subset WX of positions ofC quali�es as a singular manipulation set if:(1) all root-to-sink paths in C pass throughexatly one position in pa(WX), wherew 2 pa(WX) if w � w0 for some w0 2WXand there exists an edge e(w;w0)(2) eah position in pa(WX) has exatly onehild in WX , by whih we mean that forw 2 pa(WX), there exists exatly onew0 2 WX suh that there exists an edgee(w;w0)A singular manipulation is then an interven-tion suh that:(a) for eah w 2 pa(WX) and orrespondingw0 2WX , �̂(w0 j w) = 1



(b) for any w 2 pa(WX) and w0 =2 WX suhthat w � w0 and there exists an edgee(w;w0), then �̂(w0 j w) = 0, and thisedge is removed (or pruned) in Ĉ() for any w =2 pa(WX) and w0 suh thatw � w0 and there exists an edge e(w;w0),then �̂(w0 j w) = �(w0 j w)where �̂ is a probability in our manipulatedCEG Ĉ.Let WX = fwjg, pa(WX) = fwijg. Eah posi-tion in pa(WX) has exatly one hild inWX soelements of pa(WX) an be intially identi�edby their hild in WX (ie by theindex j). But a position in WX ould havemore than one parent in pa(WX), so we dis-tinguish these parents by a seond index i.For eah pair (wij; wj) let Xij be the variableassoiated with the edge e(wij; wj) and xij bethe setting of this variable on this edge.If we also onsider a response variable Ydownstream from the set of positions WX ,then we an show (using for example Pearl'sde�nition of Do) that:�(y j Do Int)=Xi;j h�(wij j w0) �(y j wj)i (3:1)Pearl's own Bak Door expression (below) isa simpli�ation of the general manipulated-probability expression used with BNs.�(y j Do x0)=Xz �(y j z; x0) �(z) (3:2)Z here is a subset of the measurement-variables of the BN whih obey ertain on-ditions. If Z is hosen arefully then we analulate �(y j Do x0) without onditioningon the full set of measurement-variables.In this paper we use the topology of theCEG to produe an analogous expression to(3.2) for our more general singular manipu-lation, by using a set of positions WZ down-stream from the intervention whih an stand-in for the set of positionsWX used in expres-sion (3.1). As with Pearl's expression, theuse of suh a setWZ will redue the omplex-ity of the general expression (3.1) as well as

possibly allowing us to sidestep identi�abilityproblems assoiated with it.Following Pearl, we have two onditions,whih if satis�ed, are suÆient for WZ to beonsidered a Bak Door bloking set. We givethe �rst here, and the seond following a fewfurther de�nitions.(A) For all wj 2 WX , every wj � w1 path inC must pass through exatly one positionwk 2WZThe obvious notation for use with CEGs is apath-based one. However most pratitionerswill be more familiar with expressions suhas (3.2), so we here develop a few ideas toallow us to express our ausal expression in asimilar fashion. The �rst step in this proessis to note that any position w in a CEG hasa unique set q(w) assoiated with it, where:� Q(w) is the minimum set of variables,by speifying the settings (or values orlevels) of whih, we an desribe the unionof all w0 � w paths� q(w) are the settings of Q(w) whih fullydesribe the union of all w0 � w pathsFormally this means that:q(w) = [�2�w q(�)where q(�) are the settings on thew0�w path �, and �w is the set of all w0�wpaths.Letting Z(w) be the set of variables enoun-tered on edges upstream of w, X(w) be the setof variables enountered on edges downstreamof w, and R(w) = Z(w)nQ(w), we note thatthe onditional independene statement en-oded by the position w is of the form:X(w)q R(w) j q(w)In the CEG in Figure 2 for example,X(w4) q R(w4) j q(w4) tells us that produtquality is independent of the monitoring sys-tem responses, given that B is not replaed.Note that the de�nition of q(w) meansthat the variable-settings within it might notalways orrespond to simple values of the vari-ables within Q(w). None-the-less, we have



found that q(w) is typially simpler than eahindividual q(�).We now use the ideas outlined above toexpand the expression (3.1). As the positionwk is uniquely de�ned by q(wk), we an write,without ambiguity �(y j wk) = �(y j q(wk)).Using ondition (A) we get:�(y j Do Int) (3:3)=Xi;j h�(wij j w0) Xk �(wk; y j wj)i=Xi;j;k �(wij j w0) �(y j wj ; wk) �(wk j wj)=Xi;j;k �(wij j w0) �(y j wk) �(wk j wj)=Xk hXi;j �(wij jw0)�(wkjwj)i�(yjq(wk))The equivalene of �(y j wj ; wk) and �(y j wk)is a onsequene of the equivalene of�(w3 j w1; w2) and �(w3 j w2) noted at theend of setion 2, and proved in Thwaites &Smith (2006b).We now need a number of tehnial def-initions before we an introdue our seondondition and proeed to our ausal expres-sion. Examples illustrating these de�nitionsan be found in Thwaites & Smith (2006b).Now, the position wk an also be fully de-sribed by the union of disjoint events, eah ofwhih is (by onditions (1) and (A)) aw0 � wij � wk path for some wij 2 pa(WX).These events divide into 2 distint sets:(1) w0 � wij � wj � wk paths(2) paths that do not utilise the xij edge whenleaving wij (formally w0 � wij � w0 � wkpaths where there exists an edge e(wij; w0),but w0 =2WX).We an ombine the events in set (1) intoomposite or C-paths so that eah C-pathpasses through exatly one wij and an beuniquely haraterised by a pairqij(wk) = (xij ; zij(wk)), where zij is de�ned asfollows:� Zij(wk) is the minimum set of variables,by speifying the settings of whih, wean desribe the union of all w0 � wij �wj � wk paths (with Xij exluded fromthis set)

� zij(wk) are the settings of Zij(wk) whih(with the addition of Xij = xij) fully de-sribe the union of all w0 �wij �wj �wkpathsDe�nition 5. We express this formally as:Let qij(wk) = S�2� q(�), where q(�) are thesettings on the w0�wij�wj�wk path �, and� is the set of all w0 � wij � wj � wk pathsin C. Let Qij(wk) be the set of variablespresent in qij(wk).De�ne Zij(wk) as Qij(wk)nXij. Let zij(wk) bethe settings of Zij(wk) ompatible with qij(wk).Our Xij; xij ; Zij(wk); zij(wk) are diretlyanalogous to Pearl's X;x;Z and z in expres-sion (3.2), and ful�l similar roles in our �nalausal expression.The following rather tehnial de�nitionsare only required for an understanding of theproof. De�nition 7 deals with the idea of adesendant whih is very similar to the analo-gous idea in BNs, and is needed forondition (B).De�nition 6.De�ne q(wij) analogously with the de�nitionof q(w). Let Q(wij) be the set of variablespresent in q(wij).De�ne Qj(wk) as Zij(wk)nQ(wij). Note thatQ(wij) � Zij(wk). Let qj(wk) be the settingsofQj(wk) ompatible with zij(wk) (or qij(wk)).We an therefore write:zij(wk) = (q(wij); qj(wk))qij(wk) = (xij; zij(wk)) = (q(wij); xij ; qj(wk))We an also ombine the events in set (2) intoC-paths, eah of whih an be uniquely har-aterised by rij(wk) = S�2M q(�), where q(�)are the settings on the w0 � wij � w0 � wkpath �, andM is the set of allw0�wij�w0�wkpaths in C. We an therefore write:q(wk) = h[i;j qij(wk)i[h[i;j rij(wk)iDe�nition 7. Consider variablesA;D; fBmgde�ned on our CEG C. Then D is a de-sendant of A in C if there exists a sequene



of (not neessarily adjaent) edges e1; : : : enforming part of a w0 � w1 path in C wherethe edges e1; : : : en are labelled respetivelyb1 j (a; : : :); b2 j (b1; : : :); : : : bn�1 j (bn�2; : : :);d j (bn�1; : : :), or if there exists an edge form-ing part of a w0 � w1 path in C labelledd j (a; : : :); where a; b1; b2; : : : bn�1; d are set-tings of A;B1; B2; : : : Bn�1;D.We are now in a position to state our 2ndondition.(B) In the sub-CEG Cij with wij as root-node,Qj(wk) must ontain no desendants ofXij for all i; j; for eah position wkCheking that ondition (B) is ful�lled is a-tually straightforward on a CEG, espeiallysine we will know whih manipulations weintend to investigate, and an usually on-strut our CEG so as to make Qj(wk) as smallas possible for all values of j; k.We an now replae expression (3.3) by a BakDoor expression for singular manipulations:Proposition 1.�(y j Do Int) (3:4)=Xk hXi;j �(zij(wk))i �(y j q(wk))Proof.Consider�(wk j wj) = �(wk j wij ; wj)= �(q(wk) j q(wij); xij)= ��h [m;n qmn (wk)i [ h [m;n rmn (wk)ijq(wij); xij�=Xm;n �(qmn (wk) j q(wij); xij)+Xm;n �(rmn (wk) j q(wij); xij)sine disjoint.= �(qij(wk)jq(wij); xij) + �(rij(wk)jq(wij); xij)= �(qij(wk) j q(wij); xij)= �(q(wij); xij ; qj(wk) j q(wij); xij)= �(qj(wk) j q(wij); xij)

But this is simply the probability thatQj(wk) = qj(wk) given that Xij = xij in thesub-CEG Cij .Condition (B) implies that XijqQj(wk) in Cijsine Xij has no parents in this CEG. So weget: �(wk j wj) = �(qj(wk) j q(wij))Substituting this into expression (3.3), we get:�(y j Do Int)=Xk hXi;j �(wij j w0) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(q(wij)) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(zij(wk))i �(y j q(wk)) �It is possible to show that the expression�(y j q(wk)) an be replaed by a probabilityonditioned on a single w0 � wk path, andmoreover that even on that path Y may wellbe independent of some of the variables en-ountered given the path-settings of the oth-ers | for details see Thwaites & Smith(2006b).We also noted earlier that q(w) = S q(�)is typially simpler than eah individualq(�). In most instanes Pi;j �(zij(wk)) willbe the probability of a union of disjoint eventswhih will also typially be simpler than anindividual zij(wk). We an dedue that alu-latingPi;j �(zij(wk)) is unlikely to be a om-plex task.We onlude this setion by demonstratinghow expression (3.4) is related to Pearl's BakDoor expression (3.2):Consider the intervention Do X = x0, andlet Xij = X and xij = x0 for all i; j. Combineall our w0 �wij �wj �wk C-paths, and writeSi;j qij(wk) = (x0; z(wk)). Rephrase ondi-tions (2) and (B) as:(2) eah position in pa(WX) has exatly oneof its outward edges in C labelled x0, andthis edge joins the position in pa(WX) toa position in WX



(B) Z(wk) must ontain no desendants of X(where Z(Wk) is de�ned from z(wk) inthe obvious manner)Then with a little work, we an replae ex-pression (3.4) by:�(y j Do Int)=Xk �(z(wk)) �(y j x0; z(wk))If Z(wk) ontains the same variables for all k,and z(wk) runs through all settings of Z(wk)as we run through all wk, then this expressionredues to Pearl's expression (3.2).4 Causal Analysis on CEGs and BNsThe prinipal advantage that CEGs have overBNs when it omes to Causal analysis is theirexibility. In a BN the kind of manipulationswe an onsider are severely restrited (see forexample setion 2.6 of Lauritzen (2001) wherehe omments on Shafer (1996)), whereas us-ing a CEG we an takle not only the on-ventional Do X = x0 manipulations of sym-metri models, but also the analysis of inter-ventions on asymmetri models and manipu-lations where both the manipulated-variableand the manipulated-variable value an di�erfor di�erent settings of other variables. It isalso the ase that our bloking sets are setsof values or settings, and do not need to or-respond to any �xed subset of the originalproblem random variables.For simpliity of exposition in this pa-per we have not fully exploited the potentialexibility of the CEG, onsidering only for-mulae assoiated with a bloking-set WZ ofpositions downstream of WX . We an alsoonsider sets of stages upstream of WX , andombinations of the two. Also, we have onlydisussed one partiular fairly oarse exam-ple of an intervention. There are often ir-umstanes where some paths in our CEGare not manipulated at all, for example ina treatment regime where only patients withertain ombinations of symptoms (ie at er-tain positions or stages) are treated. Thereare also non-singular interventions where (forinstane) a manipulation, rather than for-ing a path to follow one spei� edge at some
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