
Dynamic Weighting A* Search-based MAP Algorithm for
Bayesian Networks

Xiaoxun Sun
Computer Science Department

University of Southern California
Los Angeles, CA 90089
xiaoxuns@usc.edu

Marek J. Druzdzel
Decision Systems Laboratory
School of Information Sciences
& Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260
marek@sis.pitt.edu

Changhe Yuan
Department of Computer Science

and Engineering
Mississippi State University
Mississippi State, MS 39762
cyuan@cse.msstate.edu

Abstract

In this paper we introduce the Dynamic Weighting A* (DWA*) search algorithm for solv-
ing MAP. By exploiting asymmetries in the distribution of MAP variables, the algorithm
can greatly reduce the search space and yield MAP solutions with high quality.

1 Introduction

The Maximum A-Posteriori assignment (MAP)
is the problem of finding the most probable in-
stantiation of a set of variables given partial ev-
idence on the remaining variables in a Bayesian
network. A special case of MAP that has been
paid much attention is the Most Probable Ex-
planation (MPE) problem. MPE is the problem
of finding the most probable state of the model
given that all its evidences have been observed.
MAP turns out to be a much harder problem
compared to MPE. Particularly, MPE is NP-
complete while the corresponding MAP prob-
lem is NPPP -complete (Park, 2002). MAP is
more useful than MPE for providing explana-
tions. For instance, in diagnosis, generally we
are only interested in the configuration of fault
variables given some observations. There may
be many other variables that have not been ob-
served and are outside the scope of our interest.

In this paper, we introduce the Dynamic
Weighting A* (DWA*) search algorithm for
solving MAP that is generally more efficient
than existing algorithms. The algorithm ex-
plores the asymmetries among all possible as-
signments in the joint probability distribution
of the MAP variables. Typically, a small frac-
tion of all possible assignments can be expected
to cover a large portion of the total probabil-

ity space with the remaining assignments hav-
ing practically negligible probability (Druzdzel,
1994). Also, the DWA* uses dynamic weight-
ing based on greedy guess (Park and Darwiche,
2001; Yuan et al., 2004) as the heuristic func-
tion. While it is theoretically not admissi-
ble (admissible heuristic should offer an upper
bound on the MAP), it offers ε-admissibility and
excellent performance in practice (Pearl, 1988).

2 MAP

The MAP problem is defined as follows: Let M

be the set of MAP variables (we are interested
in the most probable configuration of these vari-
ables); E is the set of evidence, namely the
variables whose states we have observed; The
remainder of the variables, denoted by S, are
variables that are neither observed nor of inter-
est to us. Given an assignment e of variables
E, the MAP problem is that of finding the as-
signment m of variables M which maximizes
the probability of P (m | e), while MPE is the
special case of MAP with S being empty.

map = max
M

∑

S

p(M, S | E) . (1)

In Bayesian networks, we use the Conditional
Probability Table (CPT) φ as the potential over
a variable and its parents. A potential over all

the states of one variable after updating beliefs
is called marginal. The notation φe stands for
the potential in which we have fixed the value
of e ∈ E. Then the probability of MAP with Φ
as its CPTs turns out to be a real number:

map = max
M

∑

S

∏

φ∈Φ

φe . (2)

In Equation 2, summation does not commute
with maximization. Therefore, it is necessary
to do summation before the maximization. The
order is called the elimination order. The size
of the largest clique minus 1 in a jointree con-
structed based on an elimination order is called
the induced width. The induced width of the
best elimination order is called the treewidth.
However, for the MAP problems in which nei-
ther the set S nor the set M are empty, the order
is constrained. Then the constrained elimina-
tion order is known as the constrained treewidth.
Generally, the constrained treewidth is much
larger than treewidth, leading the problem be-
yond the limits of feasibility.

Several researchers have proposed algorithms
for solving MAP. A very efficient approximate
search-based algorithm based on local search,
proposed by Park (2002), is capable of solving
MAP efficiently. An exact method, based on
branch-and-bound depth-first search, proposed
by Park and Darwiche (2003), performs quite
well when the search space is not too large. An-
other approximate scheme, proposed by Yuan et
al. (2004), is a Reheated Annealing MAP algo-
rithm. It is somewhat slower on simple networks
but it is capable of handling difficult cases that
exact methods cannot tackle.

3 Solving MAP using Dynamic
Weighting A* Search

We propose in this section an algorithm for
solving MAP using Dynamic Weighting A*
search, which incorporates the dynamic weight-
ing (Pearl, 1988) in the heuristic function,
relevance reasoning (Druzdzel and Suermondt,
1994), and dynamic ordering in the search tree.

3.1 A* search

MAP can be solved by A* search in the proba-
bility tree that is composed of all the variables
in the MAP set. The nodes in the search tree
represent partial assignments of the MAP vari-
ables M. The root node represents an empty
assignment. Each MAP variable will be instan-
tiated in a certain order. If a variable x in the
set of MAP variables M is instantiated at the
ith place using its jth state, it will be denoted
as Mij . Leaves of the search tree correspond to
the last MAP variable that has been instanti-
ated. The vector of instantiated states of each
MAP variable is called an assignment or a sce-
nario. We compute the probability of assign-
ments while searching the whole probability tree
using chain rule. For each inner node, the newly
instantiated node will be added to the evidence
set, i.e., the evidence set will be extended to
Mij ∪E. Then the probability of an assignment
of n MAP variables can be computed as follows:

P (M | E) = P (Mni | M1j , M2k, . . .M(n−1)t, E)

. . . P (M2k | M1j , E)P (M1j | E) .

Suppose we are in the xth layer of the search tree
and preparing for instantiating the xth MAP
variables. Then the function above can be
rewritten as follows:

P (M | E) =

b
︷ ︸︸ ︷

P (Mni | M1j . . . M(n−1)t, E) . . . P (M(x+1)z | Mxy . . . E)

·P (Mxy | M1j , M2k . . . M(x−1)q, E) . . . P (M1j | E)
︸ ︷︷ ︸

a

(3)

The general idea of DWA* is that in each in-
ner node of the probability tree, we can compute
the value of item (a) in the function above ex-
actly. We can estimate the heuristic value of the
item (b) for the MAP variables that have not
been instantiated given the initial evidence set
and the MAP variables that have been instanti-
ated as the new evidence. In order to fit the typ-
ical format of the cost function of A* search, we
can take the logarithm of the equation above,
which will not change its monotonicity. Then
we get f(n) = g(n)+h(n), where g(n) and h(n)

are obtained from the logarithmic transforma-
tion of items (a) and (b) respectively. g(n) gives
the exact cost from the start node to node in the
nth layer of the search tree, and h(n) is the es-
timated cost of the best search path from the
nth layer to the leaf nodes of the search tree.
In order to guarantee the optimality of the so-
lution, h(n) should be admissible, which in this
case means that it should be an upper-bound on
the value of any assignment with the currently
instantiated MAP variables as its elements.

3.2 Heuristic Function with Dynamic

Weighting

Definition 1. A heuristic function h2 is said to
be more informed than h1 if both are admissible
and h2 is closer to the optimal cost.

For the MAP problem, the probability of the
optimal assignment Popt < h2 < h1.

Theorem 1. If h2 is more informed than h1

then A∗

2 dominates A∗

1. (Pearl, 1988)

The power of the heuristic function is mea-
sured by the amount of pruning induced by h(n)
and depends on the accuracy of this estimate.
If h(n) estimates the completion cost precisely
(h(n) = Popt), then A* will only expand nodes
on the optimal path. On the other hand, if no
heuristic at all is used, (for the MAP problem
this amounts to h(n) = 1), then a uniform-cost
search ensues, which is far less efficient. So it
is critical for us to find an admissible and tight

h(n) to get both accurate and efficient solutions.

3.2.1 Greedy Guess

If each variable in the MAP set M is condi-
tionally independent of all remaining MAP vari-
ables (this is called exhaustive independence),
then the MAP problem amounts to a simple
computation based on the greedy chain rule.
We instantiate the MAP variable in the current
search layer to the state with the largest proba-
bility and repeat this for each of the remaining
MAP variables one by one. The probability of
MAP is then

P (M |E) =
n∏

i=1

max
j

P (Mij |M(i−1)k . . .M1m, E) .

(4)

The requirement of exhaustive independence
is too strict for most MAP problems. However,
simulation results show that in practice, even
when this requirement is violated, the product
is still extremely close to the MAP probability
(Yuan et al., 2004). This suggests using it as an
ε-admissible heuristic function (Pearl, 1988).

The curve Greedy Guess Estimate in Figure 1
shows that with the increase of the number of
MAP variables, the ratio between the greedy
guess and the accurate estimate of the optimal
probability diverges from the ideal ratio one al-
though not always monotonically.

3.2.2 Dynamic Weighting

Since greedy guess is a tight lower bound on
the optimal probability of MAP, it is possible
to compensate for the error between the greedy
guess and the optimal probability. We can do
this by adding a weight to the greedy guess such
that the product of them is equal to or larger
than the optimal probability for each inner node
in the search tree. This, it turns out, yields an
excellent ε-admissible heuristic function. This
assumption can be represented as follows:

∃ε{∀PGreedyGuess ∗ (1 + ε) ≥ Popt∧

∀ε
′

(PGreedyGuess ∗ (1 + ε
′

) ≥ Popt) ⇒ ε < ε
′

} ,

where ε is the minimum weight that can guar-
antee the heuristic function to be admissible.
Figure 1 shows that if we just keep ε constant,
neglecting the changes of the estimate accuracy
with the increase of the MAP variables, the es-
timate function and the optimal probability can
be represented by the curve Constant Weight-
ing Heuristic. Obviously, the problem with this
idea is that it is less informed when the search
progresses, as there are fewer MAP variables to
estimate.

Dynamic Weighting (Pohl, 1973) is an effi-
cient tool for improving the efficiency of A*
search. If applied properly, it will keep the
heuristic function admissible while remaining
tight on the optimal probability. For MAP, in
the shallow layer of the search tree, we get more
MAP variables than the deeper layer for esti-
mate. Hence, the greedy estimate will be more

likely to diverge from the optimal probability.
We propose the following Dynamic Weighting
Heuristic Function for the xth layer of the search
tree of n MAP variables:

h(x) = GreedyGuess · (1 + α
n − (x + 1)

n
)

(α ≥ ε) .

Rather than keeping the weight constant
throughout the search, we dynamically change
it so as to make it less heavy as the search goes
deeper. In the last step of the search (x = n−1),
the weight will be zero, since the greedy guess
for only one MAP variable is exact and then the
cost function f(n-1) is equal to the probability
of the assignment. Figure 1 shows an empiri-
cal comparison of greedy guess, constant, and
dynamic weighting heuristics against accurate
estimate of the probability. We see that the dy-
namic weighting heuristic is more informed than
constant weighting.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 2 0 2 5 3 0 3 5 4 0

T h e n u m b e r o f M A P v a ria b le s

Q
u

a
lit

y
 o

f
H

(X
)

(h
(x

)/
o

p
tim

a
l)

Figure 1: An empirical comparison of the con-
stant weighting and the dynamic weighting
heuristics based on greedy guess.

3.3 Searching with Inadmissible

Heuristics for MAP Problem

Since the minimum weight ε that can guarantee
the heuristic function to be admissible is un-
known before the MAP problem is solved, and
it may vary between cases, we normally set α to
be a safe parameter that is supposed to be larger
than ε (In our experiments, we set α to be 1.0).
However, if α is accidentally smaller than ε, it

will lead the weighted heuristic to be inadmis-
sible. Let us give this a closer look and analyze
the conditions under which the algorithm fails
to achieve optimality. Suppose there are two
candidate assignments: s1 and s2 with proba-
bilities p1 and p2 respectively, among which s2

is the optimal assignment that the algorithm
fails to find. And s1 is now in the last step of
search which will lead to a suboptimal solution.
We skip the logarithm in the function for the
sake of clarity here (then the cost function f is a
product of transformed g and h instead of their
sum).

f1 = g1 · h1 and f2 = g2 · h2

The error introduced by a inadmissible h2 is
f1 > f2. The algorithm will then find s1 in-
stead of s2, i.e.,

f1 > f2 ⇒ g1 · h1 > g2 · h2.

Since s1 is now in the last step of search, f1 = p1

(Section 3.2.2). Now, suppose that we have
an ideal heuristic function h

′

2, which leads to
p2 = g2 · h

′

2. Then we have:

g1 · h1

p2
>

g2 · h2

g2 · h
′

2

⇒
p1

p2
>

g2 · h2

g2 · h
′

2

⇒
p1

p2
>

h2

h
′

2

.

It is clear that only when the ratio between
the probability of suboptimal assignment and
the optimal one is larger than the ratio be-
tween the inadmissible heuristic function and
the ideal one, will the algorithm find a subop-
timal solution. Because of large asymmetries
among probabilities that are further amplified
by their multiplicative combination (Druzdzel,
1994), we can expect that for most cases, the
ratios between p1 and p2 are far less than 1.
Even though the heuristic function will some-
times break the rule of admissibility, if only the
greedy guess is not too divergent from the ideal
estimate, the algorithm will still achieve opti-
mality. Our simulation results also confirm the
robustness of the algorithm.

3.4 Improvements to the Algorithm

There are two main techniques that we used to
improve the efficiency of the basic A* algorithm.

3.4.1 Relevance Reasoning

The main problem faced by the decision-
theoretic approach is the complexity of prob-
abilistic reasoning. The critical factor in ex-
act inference schemes for Bayesian networks
is the topology of the underlying graph and,
more specifically, its connectivity. The frame-
work of relevance reasoning (Druzdzel and
Suermondt (1994) provides an accessible sum-
mary of the relevant techniques) is based on
d-separation and other simple and computa-
tional efficient techniques for pruning irrelevant
parts of a Bayesian network and can yield sub-
networks that are smaller and less densely con-
nected than the original network. Relevance
reasoning is an integral part of the SMILE li-
brary (Druzdzel, 2005) on which the implemen-
tation of our algorithm is based.

For MAP, our focus is the set of variables
M and the evidence set E. Parts of the model
that are probabilistically independent from the
nodes in M given the observed evidence E are
computationally irrelevant to reasoning about
the MAP problem. Removing them leads to
substantial savings in computation.

3.4.2 Dynamic Ordering

As the search tree is constructed dynamically,
we have the freedom to order the variables in a
way that will improve the efficiency of DWA*.
Expanding nodes with the largest asymmetries
in marginal probability distribution leads to
early cut-off of less promising branches of the
search tree. We use the entropy of the marginal
probability distributions as a measure of asym-
metry.

4 Experimental Results

To test DWA*, we compared its performance
in real Bayesian networks with those of current
state of the art MAP algorithms: the P-Loc

and P-Sys algorithms (Park and Darwiche,
2001; Park and Darwiche, 2003) implemented
in SamIam, and AnnealedMAP (Yuan et al.,
2004) in SMILE respectively. We implemented
DWA* in C++ and performed our tests on a 3.0
GHz Pentium D Windows XP computer with
2GB RAM. We used the default parameters and

settings for all the three algorithms above dur-
ing comparison, unless otherwise stated.

4.1 Experimental Design

The Bayesian networks that we used in our
experiments included Alarm (Beinlich et al.,
1989), Barley (Kristensen and Rasmussen,
2002), CPCS179 and CPCS360 (Pradhan et al.,
1994), Diabetes (Andreassen et al., 1991), Hail-
finder (Abramson et al., 1996), Munin (An-
dreassen et al., 1989), Pathfinder (Heckerman,
1990), Andes, and Win95pts (Heckerman et al.,
1995). We also tested the algorithms on two
large proprietary diagnostic networks built at
the HRL Laboratories (HRL1 and HRL2). We
divided the networks into three groups: (1)
small and middle-sized, (2) large but tractable,
and (3) hard networks.

For each network, we randomly generated 20
cases. For each case, we randomly chose 20
MAP variables from among the root nodes. We
chose the same number of evidence nodes from
among the leaf nodes. Following tests of MAP
algorithms published earlier in the literature, we
set the search time limit to be 3, 000 seconds.

4.2 Results of First & Second Group

We firstly ran the P-Loc, P-Sys, An-

nealedMAP and DWA* on all networks in the
first and second group. The P-Sys is an exact
algorithm. So Table 2 only reports the number
of MAP problems that were solved optimally by
the rest three algorithms. DWA* found all opti-
mal solutions. The P-Loc missed only one case
on Andes and the AnnealedMAP missed one
on Hailfinder and two cases on Andes.

Since both AnnealedMAP and P-Loc

failed to find all optimal solutions in Andes, we
studied the performance of the four algorithms
as a function of the number of MAP variables
(we randomly generated 20 cases for each num-
ber of MAP variables) on it.

Because P-Sys failed to generate any result
when the number of MAP variables reached 40,
while DWA* found all largest probabilities, we
subsequently compared all the other three al-
gorithms with DWA*. With the increase of
the number of MAP variables, both P-Loc and

Group Networks P-Loc A-MAP A*

1 Alarm 20 20 20
CPCS179 20 20 20
CPCS360 20 20 20
Hailfinder 20 19 20
Pathfinder 20 20 20

Andes 19 18 20
Win95pts 20 20 20

2 Munin 20 20 20
HRL1 20 20 20
HRL2 20 20 20

Table 1: Number of cases solved optimally out
of 20 cases for the first and second group.

#MAP P-Sys P-Loc A-MAP

10 0 0 0
20 0 1 2
30 0 1 0
40 TimeOut 4 4
50 TimeOut 6 2
60 TimeOut 5 2
70 TimeOut 6 5
80 TimeOut 6 1

Table 2: Number of cases in which DWA*
found more probable instantiation than the
other three algorithms (network Andes).

AnnealedMAP turned out to be less accu-
rate than DWA* on Andes. When the num-
ber of MAP variables was above 40, there were
about 25% cases of P-Loc and 15% cases in
which AnnealedMAP found smaller probabil-
ities than DWA*. We notice from Table 2 that
P-Loc spent less time than DWA* when using
its default settings for Andes, so we increased
the search steps of P-Loc such that it spent
the same amount of time as DWA* in order to
make a fair comparison. However, in practice
the search time is not continuous in the number
of search steps, so we just chose parameters for
P-Loc such that it spent only a little bit more
time than DWA*. Table 3 shows the compar-
ison results. We can see that after increasing
the search steps of P-Loc, DWA* still main-
tains better accuracy.

In addition to the precision of the results, we

#MAP P-Loc<DWA* P-Loc>DWA*

10 0 0
20 0 0
30 0 0
40 1 0
50 2 0
60 2 1
70 3 2
80 5 0

Table 3: The number of cases in which the P-

Loc algorithm found larger/smaller probabili-
ties than DWA* in network Andes when spend-
ing a little bit more time than DWA*.

also compared the efficiency of the algorithms.
Table 4 reports the average running time of
the four algorithms on the first and the sec-
ond groups of networks. For the first group,

P-Sys P-Loc A-MAP A*

Alarm 0.017 0.020 0.042 0.005
CPCS179 0.031 0.117 0.257 0.024
CPCS360 0.045 75.20 0.427 0.072
Hailfinder 2.281 0.109 0.219 0.266
Pathfinder 0.052 0.056 0.098 0.005
Andes 14.49 1.250 4.283 2.406
Win95pts 0.035 0.041 0.328 0.032

Munin 3.064 4.101 19.24 1.763
HRL1 0.493 51.18 2.831 0.193
HRL2 0.092 3.011 2.041 0.169

Table 4: Running time (in seconds) of the four
algorithms on the first and second group.

the AnnealedMAP, P-Loc and P-Sys algo-
rithms showed similar efficiency on all except
the CPCS360 and Andes networks. DWA* gen-
erated solutions with the shortest time on av-
erage. Its smaller variance of the search time
indicates that DWA* is more stable across dif-
ferent networks.

For the second group, which consists of large
Bayesian networks, P-Sys, AnnealedMAP

and DWA* are all efficient. DWA* still spends
shortest time on average, while the P-Loc is
much slower on the HRL1 network.

4.3 Results of Third Group

The third group consists of two complex
Bayesian networks: Barley and Diabetes, many
nodes of which have more than 10 different
states. Because the P-Sys algorithm did not
produce results within the time limit, the only
available measure of accuracy was a relative one:
which of the algorithms found an assignment
with higher probability. Table 5 lists the num-
ber of cases that were solved differently between
the P-Loc, AnnealedMAP, and DWA* algo-
rithms. PL, PA and P∗ stand for the proba-
bility of MAP solutions found by P-Loc, An-

nealedMAP and DWA* respectively.

Group3 P∗>PL/P∗<PL P∗>PA/P∗<PA

Barley 3/2 5/3
Diabetes 5/0 4/0

Table 5: The numberof cases that are solved
differently from P-Loc, AnnealedMAP and
DWA*.

For Barley, the accuracy of the three algo-
rithms was quite similar. However, for Diabetes
DWA* was more accurate: it found solutions
with largest probabilities for all 20 cases, while
P-Loc failed to find 5 and AnnealedMAP

failed to find 4 of them.

Group3 P-Sys P-Loc A-MAP A*
Barley TimeOut 68.63 31.95 122.1
Diabetes TimeOut 338.4 163.4 81.8

Table 6: Running time (in seconds) of the four
algorithms on the third group.

DWA* turns out to be slower than P-Loc

and AnnealedMAP on Barley but more effi-
cient on Diabetes (see Table 6).

4.4 Results of Incremental MAP Test

Out last experiment focused on the robustness
of the four algorithms to the number of MAP
variables. In this experiment, we set the num-
ber of evidence nodes to 100, generated MAP
problems with an increasing number of MAP
nodes. We chose the Munin network, because
it seems the hardest network among the group
1 & 2 and has sufficiently large sets of root and

leaf nodes. The running times are shown in Fig-
ure 2. Typically, P-Sys and P-Loc need more
running time in face of more complex problems,
while AnnealedMAP and DWA* seem more
robust in comparison.

Number of MAP Variables(100 Evidences)

R
u

n
n

in
g

 T
im

e
 (

m
)

P-Sys

P-L o c

A n n e a lin g M A P

D W A *

Figure 2: Running time of the four algorithms
when increasing the number of MAP nodes on
the Munin network.

5 Discussion

Solving MAP is hard. By exploiting asymme-
tries among the probabilities of possible ele-
ments of the joint probability distributions of
MAP variables, DWA* is able to greatly reduce
the search space and lead to efficient and accu-
rate solutions of MAP problems. Our experi-
mental results also show that generally, DWA*
is more efficient than the existent algorithms.
Especially for large and complex Bayesian net-
works, when the exact algorithm fails to gen-
erate any result within a reasonable time, the
DWA* can still provide accurate solutions effi-
ciently. Further extension of this research is to
apply DWA* to the K-MAP problem, which is
to find k most probable assignments for MAP
variables. It is very convenient for DWA* to
achieve that, since in the process of finding the
most probable assignment the algorithm keeps
all the candidate assignments in the search fron-
tier. We can expect that the additional search
time will be linear in k.

In sum, DWA* enriches the approaches for
solving MAP problem and extends the scope of
MAP problems that can be solved.

Acknowledgements

This research was supported by the Air Force
Office of Scientific Research grants F49620–03–
1–0187 and FA9550–06–1–0243 and by Intel Re-
search. We thank anonymous reviewers for sev-
eral insightful comments that led to improve-
ments in the presentation of the paper. All
experimental data have been obtained using
SMILE, a Bayesian inference engine developed
at the Decision Systems Laboratory and avail-
able at http://genie.sis.pitt.edu/.

References

B. Abramson, J. Brown, W. Edwards, A. Murphy,
and R. Winkler. 1996. Hailfinder: A Bayesian
system for forecasting severe weather. Interna-
tional Journal of Forecasting, 12(1):57–72.

S. Andreassen, F. V. Jensen, S. K. Andersen,
B. Falck, U. Kjærulff, M. Woldbye, A. R.
Sørensen, A. Rosenfalck, and F. Jensen. 1989.
MUNIN — an expert EMG assistant. In John E.
Desmedt, editor, Computer-Aided Electromyogra-
phy and Expert Systems, chapter 21. Elsevier Sci-
ence Publishers, Amsterdam.

S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen,
and E. R. Carson. 1991. A model-based ap-
proach to insulin adjustment. In M. Stefanelli,
A. Hasman, M. Fieschi, and J. Talmon, editors,
Proceedings of the Third Conference on Artificial
Intelligence in Medicine, pages 239–248. Springer-
Verlag.

I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. 1989. The ALARM monitoring sys-
tem: A case study with two probabilistic in-
ference techniques for belief networks. In In
Proc. 2’nd European Conf. on AI and Medicine,
pages 38:247–256, Springer-Verlag, Berlin.

Marek J. Druzdzel and Henri J. Suermondt. 1994.
Relevance in probabilistic models: “Backyards” in
a “small world”. In Working notes of the AAAI–
1994 Fall Symposium Series: Relevance, pages
60–63, New Orleans, LA (An extended version of
this paper is in preparation.), 4–6 November.

M. J. Druzdzel. 1994. Some properties of joint prob-
ability distributions. In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelli-
gence (UAI–94), pages 187–194, Morgan Kauf-
mann Publishers San Francisco, California.

M. J. Druzdzel. 2005. Intelligent decision support
systems based on smile. Software 2.0, 2:12–33.

D. Heckerman, J. Breese, and K. Rommelse. 1995.
Decision-theoretic troubleshooting. Communica-
tions of the ACM, 38:49–57.

D. Heckerman. 1990. Probabilistic similarity net-
works. Networks, 20(5):607–636, August.

K. Kristensen and I.A. Rasmussen. 2002. The use
of a Bayesian network in the design of a decision
support system for growing malting barley with-
out use of pesticides. Computers and Electronics
in Agriculture, 33:197–217.

J. D. Park and A. Darwiche. 2001. Approximat-
ing MAP using local search. In Proceedings of
the 17th Conference on Uncertainty in Artificial
Intelligence (UAI–01), pages 403–410, Morgan
Kaufmann Publishers San Francisco, California.

J. D. Park and A. Darwiche. 2003. Solving MAP
exactly using systematic search. In Proceedings
of the 19th Conference on Uncertainty in Artifi-
cial Intelligence (UAI–03), pages 459–468, Mor-
gan Kaufmann Publishers San Francisco, Califor-
nia.

J. D. Park. 2002. MAP complexity results and ap-
proximation methods. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelli-
gence (UAI–02), pages 388–396, Morgan Kauf-
mann Publishers San Francisco, California.

J. Pearl. 1988. Heuristics : intelligent search
strategies for computer problem solving. Addison-
Wesley Publishing Company, Inc.

I. Pohl. 1973. The avoidance of (relative) catas-
trophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic
problem solving. In Proc. of the 3rd IJCAI, pages
12–17, Stanford, MA.

M. Pradhan, G. Provan, B. Middleton, and M. Hen-
rion. 1994. Knowledge engineering for large be-
lief networks. In Proceedings of the Tenth An-
nual Conference on Uncertainty in Artificial In-
telligence (UAI–94), pages 484–490, San Mateo,
CA. Morgan Kaufmann Publishers, Inc.

S. E. Shimony. 1994. Finding MAPs for belief net-
works is NP-hard. Artificial Intelligence, 68:399–
410.

C. Yuan, T. Lu, and M. J. Druzdzel. 2004. Annealed
MAP. In Proceedings of the 20th Annual Con-
ference on Uncertainty in Artificial Intelligence
(UAI–04), pages 628–635, AUAI Press, Arling-
ton, Virginia.

