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Abstract

We propose an algorithm called Hybrid Loopy Belief Propagation (HLBP), which extends
the Loopy Belief Propagation (LBP) (Murphy et al., 1999) and Nonparametric Belief
Propagation (NBP) (Sudderth et al., 2003) algorithms to deal with general hybrid Bayesian
networks. The main idea is to represent the LBP messages with mixture of Gaussians and
formulate their calculation as Monte Carlo integration problems. The new algorithm is
general enough to deal with hybrid models that may represent linear or nonlinear equations
and arbitrary probability distributions.

1 Introduction

Some real problems are more naturally mod-
elled by hybrid Bayesian networks that con-
tain mixtures of discrete and continuous vari-
ables. However, several factors make inference
in hybrid models extremely hard. First, linear
or nonlinear deterministic relations may exist
in the models. Second, the models may con-
tain arbitrary probability distributions. Third,
the orderings among the discrete and continu-
ous variables may be arbitrary. Since the gen-
eral case is difficult, existing research often fo-
cuses on special instances of hybrid models, such
as Conditional Linear Gaussians (CLG) (Lau-
ritzen, 1992). However, one major assumption
behind CLG is that discrete variables cannot
have continuous parents. This limitation was
later addressed by extending CLG with logis-
tic and softmax functions (Lerner et al., 2001;
Murphy, 1999). More recent research begin to
develop methodologies for more general non-
Gaussian models, such as Mixture of Truncated
Exponentials (MTE) (Moral et al., 2001; Cobb
and Shenoy, 2005), and junction tree algorithm
with approximate clique potentials (Koller et al.,
1999). However, most of these approaches rely
on the junction tree algorithm (Lauritzen and

Spiegelhalter, 1988). As Lerner et al. (Lerner et
al., 2001) pointed out, it is important to have
alternative solutions in case that junction tree
algorithm-based methods are not feasible.

In this paper, we propose the Hybrid Loopy
Belief Propagation algorithm, which extends the
Loopy Belief Propagation (LBP) (Murphy et
al., 1999) and Nonparametric Belief Propaga-
tion (NBP) (Sudderth et al., 2003) algorithms
to deal with general hybrid Bayesian networks.
The main idea is to represent LBP messages
as Mixtures of Gaussians (MG) and formulate
their calculation as Monte Carlo integration
problems. The extension is far from trivial due
to the enormous complexity brought by deter-
ministic equations and mixtures of discrete and
continuous variables. Another advantage of the
algorithm is that it approximates the true pos-
terior probability distributions, unlike most ex-
isting approaches which only produce their first
two moments for CLG models.

2 Hybrid Loopy Belief Propagation

To extend LBP to hybrid Bayesian networks,
we need to know how to calculate the LBP mes-
sages in hybrid models. There are two kinds of
messages defined in LBP. Let X be a node in
a hybrid model. Let Yj be X’s children and Ui



be X’s parents. The λ
(t+1)
X (ui) message that X

sends to its parent Ui is given by:

λ
(t+1)
X (ui) =

α
∫

x
λX(x)

∏

j

λ
(t)
Yj

(x)
∫

uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk) .(1)

and the message π
(t+1)
Yj

(x) that X sends to its
child Yj is defined as:

π
(t+1)
Yj

(x) =

αλX(x)
∏

k 6=j

λ
(t)
Yk

(x)
∫

u
P (x|u)

∏

k

π
(t)
X (uk) .(2)

where λX(x) is a message that X sends to itself
representing evidence. For simplicity, I use only
integrations in the message definitions. It is ev-
ident that no closed-form solutions exist for the
messages in general hybrid models. However,
we observe that their calculations can be for-
mulated as Monte Carlo integration problems.

First, let us look at the π
(t+1)
Yj

(x) message de-
fined in Equation 2. We can rearrange the equa-
tion in the following way:

π
(t+1)
Yj

(x) =

α
∫

u







P (x,u)
︷ ︸︸ ︷

λX(x)
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λ
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k

π
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.

Essentially, we put all the integrations out-
side of the other operations. Given the new for-
mula, we realize that we have a joint probability
distribution over x and uis, and the task is to
integrate all the uis out and get the marginal
probability distribution over x. Since P (x, u)
can be naturally decomposed into P (x|u)P (u),
the calculation of the message can be solved us-
ing a Monte Carlo sampling technique called
Composition method (Tanner, 1993). The idea
is to first draw samples for each uis from

π
(t)
X (ui), and then sample from the product of

λX(x)
∏

k 6=j

λ
(t)
Yk

(x)P (x|u). We will discuss how

to take the product in the next subsection. For
now, let us assume that the computation is pos-
sible. To make life even easier, we make further

modifications and get

π
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Yj

(x) =

α
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u
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Now, for the messages sent from X to
its different children, we can share most of
the calculation. We first get samples for
uis, and then sample from the product of

λX(x)
∏

k

λ
(t)
Yk

(x)P (x|u). For each different mes-

sage π
(t+1)
Yj

(x), we use the same sample x but

assign it different weights 1/λ
(t)
Yi

(x).
Let us now consider how to calculate the

λ
(t+1)
X (ui) message defined in Equation 1. First,

we rearrange the equation analogously:

λ
(t+1)
X (ui) = α

∫

x,uk:k 6=i







P (x,uk:k 6=i|ui)
︷ ︸︸ ︷
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.(3)

It turns out that here we are facing a quite dif-

ferent problem from the calculation of π
(t+1)
Yj

(x).

Note that now we have P (x, uk : k 6= i|ui), a
joint distribution over x and uk(k 6= i) condi-
tional on ui, so the whole expression is only a
likelihood function of ui, which is not guaran-
teed to be integrable. As in (Sudderth et al.,
2003; Koller et al., 1999), we choose to restrict
our attention to densities and assume that the
ranges of all continuous variables are bounded
(maybe large). The assumption only solves part
of the problem. Another difficulty is that com-
position method is no longer applicable here,
because we have to draw samples for all par-
ents ui before we can decide P (x|u). We note
that for any fixed ui, Equation 3 is an integra-
tion over x and uk, k 6= i and can be estimated
using Monte Carlo methods. That means that

we can estimate λ
(t+1)
X (ui) up to a constant for

any value ui, although we do not know how to
sample from it. This is exactly the time when
importance sampling becomes handy. We can
estimate the message by drawing a set of im-
portance samples as follows: sample ui from a



chosen importance function, estimate λ
(t+1)
X (ui)

using Monte Carlo integration, and assign the
ratio between the estimated value and I(ui) as
the weight for the sample. A simple choice for
the importance function is the uniform distribu-
tion over the range of ui, but we can improve the
accuracy of Monte Carlo integration by choos-
ing a more informed importance function, the

corresponding message λ
(t)
X (ui) from the last it-

eration. Because of the iterative nature of LBP,
messages usually keep improving over each it-
eration, so they are clearly better importance
functions.

Note that the preceding discussion is quite
general. The variables under consideration can
be either discrete or continuous. We only need
to know how to sample from or evaluate the
conditional relations. Therefore, we can use any
representation to model the case of discrete vari-
ables with continuous parents. For instance, we
can use general softmax functions (Lerner et al.,
2001) for the representation.

We now know how to use Monte Carlo inte-
gration methods to estimate the LBP messages,
represented as sets of weighted samples. To
complete the algorithm, we need to figure out
how to propagate these messages. Belief prop-
agation involves operations such as sampling,
multiplication, and marginalization. Sampling
from a message represented as a set of weighted
samples may be easy to do; we can use resam-
pling technique. However, multiplying two such
messages is not straightforward. Therefore, we
choose to use density estimation techniques to
approximate each continuous message using a
mixture of Gaussians (MG) (Sudderth et al.,
2003). A K component mixture of Gaussian
has the following form

M(x) =
K∑

i=1

wiN(x; µi, σi) , (4)

where
K∑

i=1
wi = 1. MG has several nice prop-

erties. First, we can approximate any contin-
uous distribution reasonably well using a MG.
Second, it is closed under multiplication. Last,
we can estimate a MG from a set of weighted

Algorithm: HLBP

1. Initialize the messages that evidence nodes send to
themselves and their children as indicating messages
with fixed values, and initialize all other messages to
be uniform.

2. while (stopping criterion not satisfied)

Recompute all the messages using Monte Carlo
integration methods.

Normalize discrete messages.

Approximate all continuous messages using MGs.

end while

3. Calculate λ(x) and π(x) messages for each variable.

4. Calculate the posterior probability distributions for
all the variables by sampling from the product of
λ(x) and π(x) messages.

Figure 1: The Hybrid Loopy Belief Propagation
algorithm.

samples using a regularized version of expecta-
tion maximization (EM) (Dempster et al., 1977;
Koller et al., 1999) algorithm.

Given the above discussion, we outline the
final HLBP algorithm in Figure 1. We first ini-
tialize all the messages. Then, we iteratively
recompute all the messages using the methods
described above. In the end, we calculate the
messages λ(x) and π(x) for each node X and
use them to estimate the posterior probability
distribution over X.

3 Product of Mixtures of Gaussians

One question that remains to be answered in
the last section is how to sample from the prod-

uct of λX(x)
∏

k 6=j

λ
(t)
Yk

(x)P (x|u). We address the

problem in this section. If P (x|u) is a contin-
uous probability distribution, we can approx-
imate P (x|u) with a MG. Then, the problem
becomes how to compute the product of several
MGs. The approximation is often a reasonable
thing to do because we can approximate any
continuous probability distribution reasonably
well using MG. Even when such approxima-
tion is poor, we can approximate the product of
P (x|u) with an MG using another MG. One ex-
ample is that the product of Gaussian distribu-



tion and logistic function can be approximated
well with another Gaussian distribution (Mur-
phy, 1999).

Suppose we have messages M1, M2, ..., MK ,
each represented as an MG. Sudderth et al. use
Gibbs sampling algorithm to address the prob-
lem (Sudderth et al., 2003). The shortcoming
of the Gibbs sampler is its efficiency: We usu-
ally have to carry out several iterations of Gibbs
sampling in order to get one sample.

Here we propose a more efficient method
based on the chain rule. If we treat the se-
lection of one component from each MG mes-
sage as a random variable, which we call a
label, our goal is to draw a sample from the
joint probability distribution of all the labels
P (L1, L2, ..., LK). We note that the joint prob-
ability distribution of the labels of all the mes-
sages P (L1, L2, ..., LK) can be factorized using
the chain rule as follows:

P (L1, L2, ..., LK) = P (L1)
K∏

i=2

P (Li|L1, ..., Li−1) .

(5)
Therefore, the idea is to sample from the

labels sequentially based on the prior or con-
ditional probability distributions. Let wij be
the weight for the jth component of ith mes-
sage and µij and σij be the component’s pa-
rameters. We can sample from the product of
messages M1, ..., MK using the algorithm pre-
sented in Figure 2. The main idea is to cal-
culate the conditional probability distributions
cumulatively. Due to the Gaussian densities,
the method has to correct the bias introduced
during the sampling by assigning the samples
weights. The method only needs to go over the
messages once to obtain one importance sam-
ple and is more efficient than the Gibbs sam-
pler in (Sudderth et al., 2003). Empirical re-
sults show that the precision obtained by the
importance sampler is comparable to the Gibbs
sampler given a reasonable number of samples.

4 Belief Propagation with Evidence

Special care is needed for belief propaga-
tion with evidence and deterministic relations.

Algorithm: Sample from a product of MGs M1 ×M2 ×

...×MK .

1. Randomly pick a component, say j1, form the first
message M1 according to its weights w11, ..., w1J1

.

2. Initialize cumulative parameters as follows
µ∗

1 ← µ1j1 ; σ∗

1 ← σ1j1 .

3. i← 2; wImportance← w1j1 .

4. while (i ≤ K)

Compute new parameters for each component of
ith message as follows

σ̂∗

ik ← ((σ∗

i−1)
−1 + (σik)−1)−1,

µ̂∗

ik ← (µik

σik

+
µ∗

i−1

σ∗

i−1

)σ̂∗

ik.

Compute new weights for ith message with any x

ŵ∗

ik = wikŵ∗

i−1ji−1

N(x;µ∗

i−1
,σ∗

i−1
)N(x;µik,σik)

N(x;µ̂∗

ik
,σ̂∗

ik
)

.

Calculate the normalized weights w̄∗

ik.

Randomly pick a component, say ji, from the ith
message using the normalized weights.

µ∗

i ← µ̂∗

iji
; σ∗

i ← σ̂∗

iji
.

i← i + 1;

wImportance = wImportance× w̄∗

iji
.

end while

5. Sample from the Gaussian with mean µ∗

K and vari-
ance σ∗

K .

6. Assign the sample weight ŵ∗

KjK
/wImportance.

Figure 2: Sample from a product of MGs.

In our preceding discussion, we approximate
P (x|u) using MG if P (x|u) is a continuous prob-
ability distribution. It is not the case if P (x|u)
is deterministic or if X is observed. We discuss
the following several scenarios separately.

Deterministic relation without evidence: We
simply evaluate P (x|u) to get the value x as a
sample. Because we did not take into account
the λ messages, we need to correct our bias us-
ing weights. For the message πYi

(x) sent from
X to its child Yi, we take x as the sample and

assign it weight λX(x)
∏

k 6=i

λ
(t)
Yk

(x). For the mes-

sage λX(ui) sent from X to its parent Ui, we
take value ui as a sample for Ui and assign it

weight λX(x)
∏

k

λ
(t)
Yk

(x)/λ
(t)
X (ui).

Stochastic relation with evidence: The mes-
sages πYj

(x) sent from evidence node X to its



children are always indicating messages with
fixed values. The messages λYj

(x) sent from
the children to X have no influence on X, so
we need not calculate them. We only need to
update the messages λX(ui), for which we take
the value ui as the sample and assign it weight

λX(e)
∏

k

λ
(t)
Yk

(e)/λ
(t)
X (ui), where e is the observed

value of X.
Deterministic relation with evidence: This

case is the most difficult. To illustrate this case
more clearly, we use a simple hybrid Bayesian
network with one discrete node A and two con-
tinuous nodes B and C (see Figure 3).

a 0.7

¬a 0.3

B

N(B; 1, 1)

P (C|A, B) a ¬a

C C = B C = 2 ∗ B

��
��

��
����

��

@@R ��	

A B

C

Figure 3: A simple hybrid Bayesian network.

Example 1. Let C be observed at state 2.0.
Given the evidence, there are only two possible
values for B: 2.0 when A = a and 1.0 when A =
¬a. We need to calculate messages λC(a) and
λC(b). If we follow the routine and sample from
A and B first, it is extremely unlikely for us
to hit a feasible sample; Almost all the samples
that we get would have weight 0.0. Clearly we
need a better way to do that.

First, let us consider how to calculate the
message λC(a) sent from C to A. Suppose we
choose uniform distribution as the importance
function, we first randomly pick a state for A.
After the state of A is fixed, we note that we can
solve P (C|A, B) to get the state for B. There-
fore, we need not sample for B from πC(b), in
this case N(B; 1, 1). We then assign N(B; 1, 1)
as weight for the sample. Since A’s two states
are equally likely, the message λC(A) would be

proportional {N(2; 1, 1), N(1; 1, 1)}.

For the message λC(b) message sent from C
to B, since we know that B can only take two
values, we choose a distribution that puts equal
probabilities on these two values as the impor-
tance function, from which we sample for B.
The state of B will also determine A as follows:
when B = 2, we have A = a; when B = 1, we
have A = ¬a. We then assign weight 0.7 to the
sample if B = 2 and 0.3 if B = 1. However, the
magic of knowing feasible values for B is impos-
sible in practice. Instead, we first sample for A
from πC(A), in this case, {0.7, 0.3}, given which
we can solve P (C|A, B) for B and assign each
sample weight 1.0. So λC(b) have probabilities
proportional to {0.7, 0.3} on two values 2.0 and
1.0.

In general, in order to calculate λ messages
sent out from a deterministic node with evi-
dence, we need to sample from all parents ex-
cept one, and then solve P (x|u) for that par-
ent. There are several issues here. First, since
we want to use the values of other parents to
solve for the chosen parent, we need an equa-
tion solver. We used an implementation of the
Newton’s method for solving nonlinear set of
equations (Kelley, 2003). However, not all equa-
tions are solvable by this equation solver or any
equation solver for that matter. We may want
to choose the parent that is easiest to solve.
This can be tested by means of a preprocess-
ing step. In more difficult cases, we have to re-
sort to users’ help and ask at the model build-
ing stage for specifying which parent to solve
or even manually specify the inverse functions.
When there are multiple choices, one heuristic
that we find helpful is to choose the continuous
parent with the largest variance.

5 Lazy LBP

We can see that HLBP involves repeated den-
sity estimation and Monte Carlo integration,
which are both computationally intense. Effi-
ciency naturally becomes a concern for the al-
gorithm. To improve its efficiency, we propose
a technique called Lazy LBP, which is also ap-
plicable to other extensions of LBP. The tech-



nique serves as a summarization that contains
both my original findings and some commonly
used optimization methods.

After evidence is introduced in the network,
we can pre-propagate the evidence to reduce
computation in HLBP. First, we can plug in any
evidence to the conditional relations of its chil-
dren, so we need not calculate the π messages
from the evidence to its children. We need not
calculate the λ messages from its children to the
evidence either. Secondly, evidence may deter-
mine the value of its neighbors because of deter-
ministic relations, in which case we can evaluate
the deterministic relations in advance so that we
need not calculate messages between them.

Furthermore, from the definitions of the LBP
messages, we can easily see that we do not have
to recompute the messages all the time. For ex-
ample, the λ(x) messages from the children of a
node with no evidence as descendant are always
uniform. Also, a message needs not be updated
if the sender of the message has received no new
messages from neighbors other than the recipi-
ent.

Based on Equation 1, λ messages should be
updated if incoming π messages change. How-
ever, we have the following result.

Theorem 1. The λ messages sent from a non-
evidence node to its parents remain uniform be-
fore it receives any non-uniform messages from
its children, even though there are new π mes-
sages coming from the parents.

Proof. Since there are no non-uniform λ mes-
sages coming in, Equation 1 simplifies to

λ
(t+1)
X (ui) = α

∫

x,uk:k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk)

= α

∫

x,uk:k 6=i

P (x, uk : k 6= i|ui)

= α .

Finally for HLBP, we may be able to calculate
some messages exactly. For example, suppose
a discrete node has only discrete parents. We
can always calculate the messages sent from this
node to its neighbors exactly. In this case, we
should avoid using Monte Carlo sampling.

6 Experimental Results

We tested the HLBP algorithm on two bench-
mark hybrid Bayesian networks: emission net-
work (Lauritzen, 1992) and its extension aug-
mented emission network (Lerner et al., 2001)
shown in Figure 4(a). Note that HLBP is ap-
plicable to more general hybrid models; We
choose the networks only for comparison pur-
pose. To evaluate how well HLBP performs, we
discretized the ranges of continuous variables to
50 intervals and then calculated the Hellinger’s
distance (Kokolakis and Nanopoulos, 2001) be-
tween the results of HLBP and the exact solu-
tions obtained by a massive amount of computa-
tion (likelihood weighting with 100M samples)
as the error for HLBP. All results reported are
the average of 50 runs of the experiments.

6.1 Parameter Selection

HLBP has several tunable parameters. We
have number of samples for estimating messages
(number of message samples), number of sam-
ples for the integration (number of integration
samples) in Equation 3. The most dramatic
influence on precision comes from the number
of message samples, shown as in Figure 4(b).
Counter intuitively, the number of integration
samples does not have as big impact as we might
think (see Figure 4(c) with 1K message sam-
ples). The reason we believe is that when we
draw a lot of samples for messages, the preci-
sion of each sample becomes less critical. In
our experiments, we set the number of message
samples to 1, 000 and the number of integra-
tion samples to 12. For the EM algorithm for
estimating MGs, we typically set the regulariza-
tion constant for preventing over fitting to 0.8,
stopping likelihood threshold to 0.001, and the
number of components in mixtures of Gaussian
to 2.

We also compared the performance of two
samplers for product of MGs: Gibbs sam-
pler (Sudderth et al., 2003) and the importance
sampler in Section 3. As we can see from Fig-
ure 4(b,c), when the number of message sam-
ples is small, Gibbs sampler has slight advan-
tage over the importance sampler. As the num-
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Figure 4: (a) Emission network (without dashed nodes) and augmented emission network (with
dashed nodes). (b,c) The influence of number of message samples and number of message inte-
gration samples on the precision of HLBP on augmented Emission network CO2Sensor and Dust-
Sensor both observed to be true and Penetrability to be 0.5. (d) Posterior probability distribution
of DustEmission when observing CO2Emission to be −1.3, Penetrability to be 0.5 and WasteType
to be 1 in Emission network. (e,f,g,h) Results of HLBP and Lazy HLBP: (e) error on emission,
(f) running time on emission, (g) error on augmented emission, (h) running time on augmented
emission.

ber of message samples increases, the difference
becomes negligible. Since the importance sam-
pler is much more efficient, we use it in all our
other experiments.

6.2 Results on Emission Networks

We note that mean and variance alone provide
only limited information about the actual poste-
rior probability distributions. Figure 4(d) shows
the posterior probability distribution of node
DustEmission when observing CO2Emission at
−1.3, Penetrability at 0.5, and WasteType at
1. We also plot in the same figure the corre-
sponding normal approximation with mean 3.77
and variance 1.74. We see that the normal ap-
proximation does not reflect the true posterior.
While the actual posterior distribution has a
multimodal shape, the normal approximation
does not tell us where the mass really is. We
also report the estimated posterior probability
distribution of DustEmission by HLBP. HLBP
seemed able to estimate the shape of the actual
distribution very accurately.

In Figures 4(e,f), we plot the error curves
of HLBP and Lazy HLBP (HLBP enhanced

by Lazy LBP) as a function of the propaga-
tion length. We can see that HLBP needs only
several steps to converge. Furthermore, HLBP
achieves better precision than its lazy version,
but Lazy HLBP is much more efficient than
HLBP. Theoretically, Lazy LBP should not af-
fect the results of HLBP but only improve its
efficiency if the messages are calcualted exactly.
However, we use importance sampling to esti-
mate the messages. Since we use the messages
from the last iteration as the importance func-
tions, iterations will help improving the func-
tions.

We also tested the HLBP algorithm on the
augmented Emission network (Lerner et al.,
2001) with CO2Sensor and DustSensor both ob-
served to be true and Penetrability to be 0.5
and report the results in Figures 4(g,h). We
again observed that not many iterations are
needed for HLBP to converge. In this case,
Lazy HLBP provides comparable results while
improving the efficiency of HLBP.



7 Conclusion

The contribution of this paper is two-fold. First,
we propose the Hybrid Loopy Belief Propagation
algorithm (HLBP). The algorithm is general
enough to deal with general hybrid Bayesian
networks that contain mixtures of discrete and
continuous variables and may represent linear
or nonlinear equations and arbitrary probability
distributions and naturally accommodate the
scenario where discrete variables have contin-
uous parents. Its another advantage is that it
approximates the true posterior distributions.
Second, we propose an importance sampler to
sample from the product of MGs. Its accuracy is
comparable to the Gibbs sampler in (Sudderth
et al., 2003) but much more efficient given the
same number of samples. We anticipate that,
just as LBP, HLBP will work well for many
practical models and can serve as a promising
approximate method for hybrid Bayesian net-
works.
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