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Abstract

In this paper we compare Naı̈ve Bayes (NB) models, general Bayes Net (BN) models and Proba-
bilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis
we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also
measure accuracy and efficiency empirically by running exact inference algorithms on randomly
generated queries. Our analysis supports previous results by showing good accuracy for NB mod-
els compared to both BN and PDG models. However, our results also show that the advantage of
the low complexity inference provided by NB models is not as significant as assessed in a previous
study.

1 Introduction

Probabilistic graphical models (PGMs) have been
applied extensively in machine learning and data
mining research, and many studies have been dedi-
cated to the development of algorithms for learning
PGMs from data. Automatically learned PGMs are
typically used for inference, and therefore efficiency
and accuracy of the PGM w.r.t. inference are of in-
terest when evaluating a learned model.

Among some of the most commonly used PGMs
are the general Bayesian Network model (BN) and
the Naı̈ve Bayes model (NB). The BN model ef-
ficiently represents a joint probability distribution
over a domain of discrete random variables by a fac-
torization into independent local distributions. The
NB model contains a number of components defined
by an unobserved latent variable and models each
discrete random variable as independent of all other
variables within each component. Exact inference
has linear time complexity in the size of the model
when using NB models.

For the general BN model both exact and approx-
imate inference are NP-hard (Cooper, 1987; Dagum
and Luby, 1993).

Model-selection algorithms for learning PGMs
typically use some conventional score-metric,
searching for a model that optimises the metric. Pe-

nalised likelihood metrics like BIC, AIC and MDL
are weighted sums of model accuracy and size.
When the learned model is to be used for general in-
ference, including a measure for inference complex-
ity into the metric is relevant. Neither BIC, AIC nor
MDL explicitly takes inference complexity into ac-
count when assessing a given model. Recently, sev-
eral authors have independently emphasised the im-
portance of considering inference complexity when
applying learning in a real domain.

Beygelzimer and Rish (2003) investigate the
tradeoff between model accuracy and efficiency.
They only consider BN models for a given target
distribution (in a learning setting, the target distri-
bution is the empirical distribution defined by the
data; more generally, the target distribution could
be any distribution one wants to represent). For BNs
treewidth is an adequate efficiency measure (defined
as k − 1, where k is the size of the largest clique in
an optimal junction tree). Tradeoff curves that plot
treewidth against the best possible accuracy achiev-
able with a given treewidth are introduced. These
tradeoff curves can be used to investigate the ap-
proximability of a target distribution.

As an example for a distribution with poor ap-
proximability in this sense, Beygelzimer and Rish
(2003) mention the parity distribution, which rep-



resents the parity function on n binary inputs. An
accurate representation of this distribution requires
a BN of treewidth n− 1, and any BN with a smaller
treewidth can approximate the parity distribution
only as well as the empty network.

The non-approximability of the parity distribu-
tion (and hence the impossibility of accurate models
supporting efficient inference) only holds under the
restriction to BN models with nodes corresponding
exactly to the n input bits. The use of other PGMs,
or the use of latent variables in a BN representation,
can still lead to accurate and computationally effi-
cient representations of the parity distribution.

Motivated by some distribution’s refusal to be ef-
ficiently approximated by BN models, the PGM lan-
guage of probabilistic decision graph (PDG) mod-
els was developed (Jaeger, 2004). In particular, the
parity distribution is representable by a PDG that
has inference complexity linear in n. In a recent
study an empirical analysis of the approximations
offered by BN and PDG models learned from real-
world data was conducted (Jaeger et al., 2006). Sim-
ilar to the tradeoff curves of (Beygelzimer and Rish,
2003), Jaeger et al. (2006) used graphs showing
likelihood of data vs. size of the model for the anal-
ysis of accuracy vs. complexity. The comparison of
PDGs vs. BNs did not produce a clear winner, and
the main lesson was that the models offer surpris-
ingly similar tradeoffs when learned from real data.

Also motivated by considerations of model ac-
curacy and efficiency, Lowd and Domingos (2005)
in a recent study compared NB and BN models.
NB models can potentially offer accuracy-efficiency
tradeoff behaviors that for some distributions differ
from those provided by standard BN representation
(although NBs do not include the latent class mod-
els that allow an efficient representation of the par-
ity distribution). Lowd and Domingos (2005) deter-
mine inference complexity empirically by measur-
ing inference times on randomly generated queries.
The inferences are computed exactly for NB mod-
els, but for BN models approximate methods were
used (Gibbs sampling and loopy belief propaga-
tion). Lowd and Domingos (2005) conclude that
NB models offer approximations that are as accu-
rate as those offered by BN models, but in terms of
inference complexity the NB models are reported to
be orders of magnitude faster than BN models.

Our present paper extend these previous works in
two ways. First, we conduct a comparative analysis
of accuracy vs. efficiency tradeoffs for three type
of PGMs: BN, NB and PDG models. Our results
show that in spite of theoretical differences BN,
NB and PDG models perform surprisingly similar
when learned from real data, and no single model
is consistently superior. Second, we investigate the
theoretical and empirical efficiency of exact infer-
ence for all models. This analysis somewhat differs
from the analysis in (Lowd and Domingos, 2005),
where only approximate inference was considered
for BNs. The latter approach can lead to somewhat
unfavorable results for BNs, because approximate
inference can be much slower than exact inference
for models still amenable to exact inference. Our re-
sults show that while NB models are still very com-
petitive w.r.t. accuracy, exact inference in BN mod-
els is often tractable and differences in empirically
measured run-times are typically not significant.

2 Probabilistic Graphical Models

In this section we introduce the three types of mod-
els that we will use in our experiments; the gen-
eral Bayesian Network (BN), the Naı̈ve Bayesian
Network (NB) and the Probabilistic Decision Graph
(PDG).

2.1 Bayesian Network Models

BNs (Jensen, 2001; Pearl, 1988) are a class of
probabilistic graphical models that represent a joint
probability distribution over a domain X of discrete
random variables through a factorization of inde-
pendent local distributions or factors. The structure
of a BN is a directed acyclic graph (DAG) G =
(V,E) of nodes V and directed edges E. Each ran-
dom variable Xi ∈ X is represented by a node Vi ∈
V, and the factorization

∏
Xi∈X

P (Xi|paG(Xi))
(where paG(Xi) is the set of random variables rep-
resented by parents of node Vi in DAG G) defines
the full joint probability distribution P (X) repre-
sented by the BN model. By size of a BN we under-
stand the size of the representation, i.e. the number
of independent parameters. Exact inference is usu-
ally performed by first constructing a junction tree
from the BN. Inference is then solvable in time lin-
ear in the size of the junction tree (Lauritzen and



Spiegelhalter, 1988), which may be exponential in
the size of the BN from which it was constructed.

2.2 Naı̈ve Bayes Models

The NB model represents a joint probability distri-
bution over a domain X of discrete random vari-
ables by introducing an unobserved, latent variable
C . Each state of C is referred to as a component,
and conditioned on C , each variable Xi ∈ X is as-
sumed to be independent of all other variables in X.
This yields the simple factorization: P (X, C) =
P (C)

∏
Xi∈X

P (Xi|C). Exact inference is com-
putable in time linear in the representation size of
the NB model.

2.3 Probabilistic Decision Graph Models

PDGs are a fairly new language for probabilis-
tic graphical modeling (Jaeger, 2004; Bozga and
Maler, 1999). As BNs and NBs, PDGs represent
a joint probability distribution over a domain of dis-
crete random variables X through a factorization of
local distributions. However, the structure of the
factorization defined by a PDG is not based on a
variable level independence model but on a certain
kind of context specific independencies among the
variables. A PDG can be seen as a two-layer struc-
ture, 1) a forest of tree-structures over all mem-
bers of X, and 2) a set of rooted DAG structures
over parameter nodes, each holding a local distri-
bution over one random variable. Figure 1(a) shows
a forest F of tree-structures over binary variables
X = {X0, X1 . . . , X5}, and figure 1(b) shows an
example of a PDG structure based on F . For a com-
plete semantics of the PDG model and algorithms
for exact inference with linear complexity in the size
of the model, the reader is referred to (Jaeger, 2004).
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Figure 1: Example PDG. Subfigure (a) shows the a
forest-structure F over binary 5 variables, and (b)
shows a full PDG structure based on F .

3 Elements of the Analysis

The goal of our analysis is to investigate the qual-
ity of PGMs learned from real data w.r.t. accu-
racy and inference efficiency. The appropriate no-
tion of accuracy depends on the intended tasks for
the model. Following (Jaeger et al., 2006; Lowd
and Domingos, 2005; Beygelzimer and Rish, 2003)
we use log-likelihood of the model given the data
(L(M,D)) as a “global” measure of accuracy. Log-
likelihood score is essentially equivalent to cross-
entropy (CE) between the empirical distribution
PD and the distribution P M represented in model
M :

CE(P D, P M ) = −H(P D) −
1

|D|
L(M,D), (1)

where H(·) is the entropy function. Observe that
when CE(P D, P M ) = 0 (when P D and P M are
equal), then L(M,D) = −|D| ·H(P D). Thus, data
entropy is an upper bound on the log-likelihood.

3.1 Theoretical Complexity vs. Accuracy

We use SL-curves (Jaeger et al., 2006) in our anal-
ysis of the theoretical performance of each PGM
language. SL-curves are plots of size vs. likeli-
hood. The size of model here is the effective size, i.e.
a model complexity parameter, such that inference
has linear time complexity in this parameter. For
NB and PDG models this is the size of the model
itself. For BN models it is the size of the junction
tree constructed for inference.

3.2 Empirical Complexity and Accuracy

The size measure used in the SL-curves described
in section 3.1 measures inference complexity only
up to a linear factor. Following Lowd and Domin-
gos (2005), we estimate the complexity of exact
inference also empirically by measuring execution
times for random queries. A query for model M

is solved by computing a conditional probability
PM (Q = q|E = e), where Q,E are disjoint sub-
sets of X, and q, e are instantiations of Q, respec-
tively E. Queries are randomly generated as fol-
lows: first a random pair 〈Qi,Ei〉 of subsets of
variables is drawn from X. Then, an instance di

is randomly drawn from the test data. The random
query then is P M (Q = di[Qi]|E = di[Ei]), where



di[Qi], di[Ei] are the instantiations of Q, respec-
tively E in di. The empirical complexity is sim-
ply the average execution time for random queries.
The empirical accuracy is measured by averaging
log(P M (Q = di[Qi]|E = di[Ei])) over the ran-
dom queries. Compared to the global accuracy mea-
sure L(M,D), this can be understood as a measure
for “local” accuracy, i.e. restricted to specific con-
ditional and marginal distributions of P M .

4 Learning

In this section we briefly describe the algorithms
we use for learning each type of PGM from data.
For our analysis we need to learn a range of models
with different efficiency vs. accuracy tradeoffs. For
score based learning a general λ-score will be used
(Jaeger et al., 2006):

Sλ(M,D) = λ · L(M,D) − (1 − λ)|M |, (2)

where 0 < λ < 1, and |M | is the size of model
M . Equation (2) is a general score metric, as it be-
comes equivalent to common metrics as BIC, AIC
and MDL for specific settings of λ1. By optimizing
scores with different settings of λ we get a range of
models offering different tradeoffs between size and
accuracy. Suitable ranges of λ-values were deter-
mined experimentally for each type of model using
score score-based learning (BNs and PDGs).

4.1 Learning Bayesian Networks

We use the KES algorithm for learning BN mod-
els (Nielsen et al., 2003). KES performs model-
selection in the space of equivalence classes of BN
structures using a semi-greedy heuristic. A param-
eter k ∈ [0 . . . 1] controls the level of greediness,
where a setting of 0 is maximally stochastic and 1 is
maximally greedy.

The λ-score used in the KES algorithm uses the
size of the BN as the size parameter |M |, not the
size of its junction tree. Clearly, it would be desir-
able to score BNs directly by the size of their junc-
tion trees, but this appears computationally infeasi-
ble. Thus, our SL-curves for BNs do not show for a
given accuracy level the smallest possible size of a
junction tree achieving that accuracy, but the size of

1E.g. (2) with λ =

log|D|
2+log |D|

corresponds to BIC

a junction tree we were able to find using existing
state-of-the-art learning and triangulation methods.

4.2 Learning Naı̈ve Bayes Net Models

For learning NB models we have implemented a
version of the NBE algorithm (Lowd and Domin-
gos, 2005) for learning NB models. As the structure
of NB models is fixed, the task reduces to learning
the number of states in the latent variable C , and
the parameters of the model. Learning in the pres-
ence of the latent components is done by standard
Expectation Maximization (EM) approach, follow-
ing (Lowd and Domingos, 2005; Karciauskas et al.,
2004). Learning a range of models is done by incre-
mentally increasing the number of states of C , and
outputting the model learned for each cardinality. In
this way we obtain a range of models that offer dif-
ferent complexity vs. accuracy tradeoffs. Note that
no structure-score like (2) is required as the struc-
ture is fixed.

4.3 Learning Probabilistic Decision Graphs

Learning of PDGs is done using the model-selection
algorithm presented in (Jaeger et al., 2006). Using
local transformations as search operators, the algo-
rithm performs a search for a structure that opti-
mises λ-score.

5 Experiments

We have produced SL-curves and empirically mea-
sured inference times and accuracy, on 5 differ-
ent datasets (see table 1) from the UCI repository2 .
These five datasets are a representative sample of
the 50 datasets used in the extensive study by Lowd
and Domingos (2005).

We used the same versions of the datasets as used
by Lowd and Domingos (2005). Specifically, the
partitioning into training (90%) and test (10%) sets
was the same, continuous variables were discretized
into five equal frequency bins, and missing values
were interpreted as special states of the variables.

For measuring the empirical efficiency and accu-
racy, we generated random queries as described in
3.2 consisting of 1 to 5 query variables Q and 0 to
5 evidence variables E.

2http://www.ics.uci.edu/˜mlearn



Table 1: Datasets used for experiments.
Dataset #Vars training test
Poisonous Mushroom 23 7337 787
King, Rook vs. King 7 25188 2868
Pageblocks 11 4482 574
Abalone 9 3758 419
Image Segmentation 17 2047 263

For inference in BN and NB models we used
the junction-tree algorithm implemented in the in-
ference engine in Hugin3 through the Hugin Java
API. For inference in PDGs, the method described
in (Jaeger, 2004) was implemented in Java. BN and
NB experiments were performed on a standard lap-
top, 1.6GHz Pentium CPU with 512Mb RAM run-
ning Linux. PDG experiments were performed on
a Sun Fire280R, 900Mhz SPARC CPU with 4Gb
RAM running Solaris 9.

6 Results

Table 2 shows SL-curves for each dataset and PGM,
both for training (left column) and test sets (right
column).

Lowd and Domingos (2005) based their compar-
ison on single BN and NB models. The NB models
were selected by maximizing likelihood on a hold-
out set. Crosses × in the right column of table 2 in-
dicate the size-likelihood values obtained by the NB
models reported in (Lowd and Domingos, 2005).

The first observation we make from table 2 is
that no single model language consistently domi-
nates the others. The plots in the left column shows
that BN models have the lowest log-likelihood mea-
sured on training data consistently for models larger
than some small threshold. For Abalone and Image
Segmentation, this characteristic is mitigated in the
plots for the test-data, where especially PDGs seem
to overfit the training-data and accordingly receives
low log-likelihood score on the test-data.

The overall picture in table 2 is that in terms of ac-
curacy, BNs and NBs are often quite similar (King,
Rook vs. King is the only exception). This is con-
sistent with what Lowd and Domingos (2005) have
found. However, Lowd and Domingos (2005) re-
ported big differences in inference complexity when

3http://www.hugin.com

comparing exact inference in NB to approximate
methods in BNs. We do not observe this tendency
when considering exact inference for both BNs and
NBs. Our results show that we can learn BNs that
are within reach of exact inference methods, and
that the theoretical inference complexity as mea-
sured by effective model size mostly is similar for
a given accuracy level for all three PGM languages.

Effective model size measures actual inference
time only up to a linear factor. In order to de-
termine whether there possibly are huge (orders of
magnitude) differences in these linear factors, we
measure the actual inference time on our random
queries. The left column of table 3 shows the av-
erage inference time for 1000 random queries with
4 query and 3 evidence variables (results for other
numbers of query and evidence variables were very
similar). We observe that this empirical complex-
ity behaves almost indistinguishably for BN and NB
models. This is not surprising, since both models
use the Hugin inference engine 4. The results do
show, however, that the different structures of the
junction trees for BN and NB models do not have
a significant impact on runtime. The linear factor
for PDG inference in these experiments is about 4
times larger than that for BN/NB inference5 . Seeing
that we use a proof-of-concept prototype Java im-
plementation for PDGs, and the commercial Hugin
inference engine for BNs and NBs, this indicates
that PDGs are competitive in practice, not only ac-
cording to theoretical complexity analyses.

The right column in table 3 shows the empirical
(local) accuracy obtained for 1000 random queries
with 4 query and 3 evidence variables. Overall, the
results are consistent with the global accuracy on
the test data (table 2, right column). The differences
observed for the different PGMs in table 2 can also
be seen in table 3, though the discrepancies tend

4Zhang (1998) shows that variable elimination can be more
efficient than junction tree-based inference. However, his re-
sults do not indicate that we would obtain substantially differ-
ent results if we used variable elimination in our experiments.

5This factor has to be viewed with caution, since PDG in-
ference was run on a machine with a slower CPU but more
main memory. When running PDG inference on the same ma-
chine as NB/BN inference, we observed overall a similar per-
formance, but more deviations from a strictly linear behavior
(in table 3 still visible to some degree for the Mushroom and
Abalone data). These deviations seem mostly attributable to
the memory management in the Java runtime environment.



Table 2: SL-curves for train-sets (left column) and test-sets (right column). The crosses × marks the NB
models reported by Lowd and Domingos (2005). −H(D) (minus data-entropy) is plotted as a horizontal
line.
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Table 3: Empirical efficiency (left column) and accuracy (right column) for 4 query and 3 evidence variables.
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to become less pronounced on the random queries
as on global likelihood (particularly for PDGs in
the image segmentation data). One possible expla-
nation for this is that low global likelihood scores
are mostly due to a few test cases whose joint in-
stantiation of the variables are given low probability
by a model, and that these isolated low-probability
configurations are seldom met with in the random
queries.

7 Conclusion

Motivated by several previous, independent studies
on the tradeoff between model accuracy and effi-
ciency in different PGM languages, we have inves-
tigated the performance of BN, NB, and PDG mod-
els. Our main findings are: 1) In contrast to po-
tentially widely different performance on artificial
examples (e.g. the parity distribution), we observe a
relatively uniform behavior of all three languages on
real-life data. 2) Our results confirm the conclusions
of Lowd and Domingos (2005) that the NB model
is a viable alternative to the BN model for gen-
eral purpose probabilistic modeling and inference.
However, the order-of-magnitude advantages in in-
ference complexity could not be confirmed when
comparing exact inference methods for both types
of models. 3) Previous theoretical complexity anal-
yses for inference in PDG models now have been
complemented with empirical results showing also
the practical competitiveness of PDGs.
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