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Abstract

The MAP problem for Bayesian networks is the problem of finding for a set of variables an
instantiation of highest posterior probability given the available evidence. The problem is
known to be computationally infeasible in general. In this paper, we present a method for
preprocessing the MAP problem with the aim of reducing the runtime requirements for
its solution. Our method exploits the concepts of Markov and MAP blanket for deriving
partial information about a solution to the problem. We investigate the practicability of
our preprocessing method in combination with an exact algorithm for solving the MAP
problem for some real Bayesian networks.

1 Introduction

Upon reasoning with a Bayesian network, of-
ten a best explanation is sought for a given
set of observations. Given the available evi-
dence, such an explanation is an instantiation of
highest probability for some subset of the net-
work’s variables. The problem of finding such
an instantiation has an unfavourable computa-
tional complexity. If the subset of variables for
which a most likely instantiation is to be found
includes just a single variable, then the prob-
lem, which is known as the Pr problem, is NP-
hard in general. A similar observation holds for
the MPE problem in which an instantiation of
highest probability is sought for all unobserved
variables. These two problems can be solved
in polynomial time, however, for networks of
bounded treewidth. If the subset of interest is a
non-singleton proper subset of the set of unob-
served variables, on the other hand, the prob-
lem, which is then known as the MAP problem,
remains NP-hard even for networks for which
the other two problems can be feasibly solved
(Park and Darwiche, 2002).

By performing inference in a Bayesian net-
work under study and establishing the most
likely value for each variable of interest sepa-
rately, an estimate for a solution to the MAP

problem may be obtained. There is no guar-
antee in general, however, that the values in
the resulting joint instantiation indeed corre-
spond to the values of the variables in a solu-
tion to the MAP problem. In this paper, we
now show that, for some of the variables of in-
terest, the computation of marginal posterior
probabilities may in fact provide exact informa-
tion about their value in a solution to the MAP
problem. We show more specifically that, by
building upon the concept of Markov blanket,
some of the variables may be fixed to a par-
ticular value; for some of the other variables of
interest, moreover, values may be excluded from
further consideration. We further introduce the
concept of MAP blanket that serves to provide
similar information.

Deriving partial information about a solution
to the MAP problem by building upon the con-
cepts of Markov and MAP blanket, can be ex-
ploited as a preprocessing step before the prob-
lem is actually solved with any available al-
gorithm. The derived information in essence
serves to reduce the search space for the prob-
lem and thereby reduces the algorithm’s run-
time requirements. We performed an initial
study of the practicability of our preprocess-
ing method by solving MAP problems for real
networks using an exact branch-and-bound al-



gorithm, and found that preprocessing can be
profitable.

The paper is organised as follows. In Sec-
tion 2, we provide some preliminaries on the
MAP problem. In Section 3, we present two
propositions that constitute the basis of our pre-
processing method. In Section 4, we provide
some preliminary results about the practicabil-
ity of our preprocessing method. The paper is
ended in Section 5 with our concluding obser-
vations.

2 The MAP problem

Before reviewing the MAP problem, we intro-
duce our notational conventions. A Bayesian
network is a model of a joint probability dis-
tribution Pr over a set of stochastic variables,
consisting of a directed acyclic graph and a set
of conditional probability distributions. We de-
note variables by upper-case letters (A) and
their values by (indexed) lower-case letters (ai);
sets of variables are indicated by bold-face
upper-case letters (A) and their instantiations
by bold-face lower-case letters (a). Each vari-
able is represented by a node in the digraph;
(conditional) independence between the vari-
ables is encoded by the digraph’s set of arcs
according to the d-separation criterion (Pearl,
1988). The Markov blanket B of a variable A

consists of its neighbours in the digraph plus the
parents of its children. Given its Markov blan-
ket, the variable is independent of all other vari-
ables in the network. The strengths of the prob-
abilistic relationships between the variables are
captured by conditional probability tables that
encode for each variable A the conditional dis-
tributions Pr(A | p(A)) given its parents p(A).

Upon reasoning with a Bayesian network, of-
ten a best explanation is sought for a given set
of observations. Given evidence o for a subset
of variables O, such an explanation is an instan-
tiation of highest probability for some subset M

of the network’s variables. The set M is called
the MAP set for the problem; its elements are
called the MAP variables. An instantiation m

of highest probability to the set M is termed a
MAP solution; the value that is assigned to a

MAP variable in a solution m is called its MAP

value. Dependent upon the size of the MAP set,
we distinguish between three different types of
problem. If the MAP set includes just a single
variable, the problem of finding the best expla-
nation for a set of observations reduces to es-
tablishing the most likely value for this variable
from its marginal posterior probability distribu-
tion. This problem is called the Pr problem as it
essentially amounts to performing standard in-
ference (Park and Darwiche, 2001). In the sec-
ond type of problem, the MAP set includes all

non-observed variables. This problem is known
as the most probable explanation or MPE prob-

lem. In this paper, we are interested in the third
type of problem, called the MAP problem, in
which the MAP set is a non-singleton proper
subset of the set of non-observed variables of the
network under study. This problem amounts to
finding an instantiation of highest probability
for a designated set of variables of interest.

We would like to note that the MAP problem
is more complex in essence than the other two
problems. The Pr problem and the MPE prob-
lem both are NP-hard in general and are solv-
able in polynomial time for Bayesian networks
of bounded treewidth. The MAP problem is
NPPP-hard in general and remains NP-hard for
these restricted networks (Park, 2002).

3 Fixing MAP values

By performing inference in a Bayesian network
and solving the Pr problem for each MAP vari-
able separately, an estimate for a MAP solu-
tion may be obtained. There is no guarantee
in general, however, that the value with highest
marginal probability for a variable corresponds
with its value in a MAP solution. We now show
that, for some variables, the computation of
marginal probabilities may in fact provide ex-
act information about their MAP values.

The first property that we will exploit in the
sequel, builds upon the concept of Markov blan-
ket. We consider a MAP variable H and its
associated Markov blanket. If a specific value
hi of H has highest probability in the marginal
distribution over H for all possible instantia-



tions of the blanket, then hi will be the value of
H in a MAP solution for any MAP problem in-
cluding H. Alternatively, if some value hj never
has highest marginal probability, then this value
cannot be included in any solution.

Proposition 1. Let H be a MAP variable in a

Bayesian network and let B be its Markov blan-

ket. Let hi be a specific value of H.

1. If Pr(hi | b) ≥ Pr(hk | b) for all values

hk of H and all instantiations b of B, then

hi is the value of H in a MAP solution for

any MAP problem that includes H.

2. If there exist values hk of H with Pr(hi |
b) < Pr(hk | b) for all instantiations b

of B, then hi is not the MAP value of H

in any solution to a MAP problem that in-

cludes H.

Proof. We prove the first property stated in the
proposition; the proof of the second property
builds upon similar arguments.

We consider an arbitrary MAP problem with
the MAP set {H} ∪ M and the evidence o for
the observed variables O. Finding a solution to
the problem amounts to finding an instantiation
to the MAP set that maximises the posterior
probability Pr(H,M | o). We have that

Pr(hi,M | o) =

=
∑

b
Pr(hi | b,o) · Pr(M | b,o) · Pr(b | o)

For the posterior probability Pr(hk,M | o) an
analogous expression is found. Now suppose
that for the value hi of H we have that Pr(hi |
b) ≥ Pr(hk | b) for all values hk of H and all in-
stantiations b of B. Since B is the Markov blan-
ket of H, we have that Pr(hi | b) ≥ Pr(hk | b)
implies Pr(hi | b,o) ≥ Pr(hk | b,o) for all val-
ues hk of H and all instantiations b of B. We
conclude that Pr(hi,M | o) ≥ Pr(hk,M | o)
for all hk. The value hi of H thus is included
in a solution to the MAP problem under study.
Since the above considerations are algebraically
independent of the MAP variables M and of the
evidence o, this property holds for any MAP
problem that includes the variable H. �
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Figure 1: An example directed acyclic graph.

The above proposition provides for preprocess-
ing a MAP problem. Prior to actually solving
the problem, some of the MAP variables may be
fixed to a particular value using the first prop-
erty. With the second property, moreover, var-
ious values of the MAP variables may be ex-
cluded from further consideration. By build-
ing upon the proposition, therefore, the search
space for the MAP problem is effectively re-
duced. We illustrate this with an example.

Example 1. We consider a Bayesian network
with the graphical structure from Figure 1.
Suppose that H is a ternary MAP variable with
the values h1, h2 and h3. The Markov blanket
B of H consists of the three variables A, C and
D. Now, if for any instantiation b of these vari-
ables we have that Pr(h1 | b) ≥ Pr(h2 | b) and
Pr(h1 | b) ≥ Pr(h3 | b), then h1 occurs in a
MAP solution for any MAP problem that in-
cludes H. By fixing the variable H to the value
h1, the search space of any such problem is re-
duced by a factor 3. We consider, as an exam-
ple, the MAP set {H,E,G, I} of ternary vari-
ables. Without preprocessing, the search space
includes 34 = 81 possible instantiations. By fix-
ing the variable H to h1, the search space of the
problem reduces to 33 = 27 instantiations. �

Establishing whether or not the properties from
Proposition 1 can be used for a specific MAP
variable, requires a number of computations
that is exponential in the size of the variable’s
Markov blanket. The computations required,
however, are highly local. A single restricted in-
ward propagation for each instantiation of the
Markov blanket to the variable of interest suf-
fices. Since the proposition moreover holds for



any MAP problem that includes the variable,
the computational burden involved is amortised
over all future MAP computations.

The second proposition that we will exploit
for preprocessing a MAP problem, builds upon
the new concept of MAP blanket. We consider
a problem with the MAP variables {H} ∪ M.
A MAP blanket K of H now is a minimal sub-
set K ⊆ M such that K d-separates H from
M \ K given the available evidence. Now, if a
specific value hi of H has highest probability in
the marginal distribution over H given the ev-
idence for all possible instantiations of K, then
hi will be the MAP value of H in a solution to
the MAP problem under study. Alternatively, if
some value hj never has highest marginal prob-
ability, then this value cannot be a MAP value
in any of the problem’s solutions.

Proposition 2. Let {H} ∪M be the MAP set

of a given MAP problem for a Bayesian network

and let o be the evidence that is available for

the observed variables O. Let K be the MAP

blanket for the variable H given o, and let hi be

a specific value of H.

1. If Pr(hi | k,o) ≥ Pr(hk | k,o) for all values

hk of H and all instantiations k to K, then

hi is the MAP value of H in a solution to

the given MAP problem.

2. If there exist values hk of H with Pr(hi |
k,o) < Pr(hk | k,o) for all instantiations

k to K, then hi is not the MAP value of H

in any solution to the given MAP problem.

The proof of the proposition is relatively
straightforward, building upon similar argu-
ments as the proof of Proposition 1.

The above proposition again provides for pre-
processing a MAP problem. Prior to actually
solving the problem, the values of some vari-
ables may be fixed and other values may be ex-
cluded for further consideration. The proposi-
tion therefore again serves to effectively reduce
the search space for the problem under study.
While the information derived from Proposi-
tion 1 holds for any MAP problem including H,

however, Proposition 2 provides information for
any problem in which H has a subset of K for its
MAP blanket and with matching evidence for
the observed variables that are not d-separated
from H by K. The information derived from
Proposition 2, therefore, is more restricted in
scope than that from Proposition 1.

We illustrate the application of Proposition 2
for our example network.

Example 2. We consider again the MAP set
{H,E,G, I} for the Bayesian network from Ex-
ample 1. In the absence of any evidence, the
MAP blanket of the variable H includes just
the variable I. Now, if for each value i of
I we have that Pr(h1 | i) ≥ Pr(h2 | i) and
Pr(h1 | i) ≥ Pr(h3 | i), then the value h1 occurs
in a solution to the given MAP problem. The
search space for actually solving the problem
thus again is reduced from 81 to 27. �

Establishing whether or not the properties from
Proposition 2 can be used for a specific MAP
variable, requires a number of computations
that is exponential in the size of the vari-
able’s MAP blanket. The size of this blanket
is strongly dependent of the network’s connec-
tivity and of the location of the various MAP
variables and observed variables in the network.
The MAP blanket can in fact be larger in size
than the Markov blanket of the variable. The
computations required, moreover, are less local
than those required for Proposition 1 and can
involve full inward propagations to the variable
of interest. Since the proposition in addition
applies to just a restricted class of MAP prob-
lems, the computational burden involved in its
verification can be amortised over other MAP
computations to a lesser extent than that in-
volved in the verification of Proposition 1.

The general idea underlying the two propo-
sitions stated above is the same. The idea is
to verify whether or not a particular value of
H can be fixed or excluded as a MAP value by
investigating H’s marginal probability distribu-
tions given all possible instantiations of a collec-
tion of variables surrounding H. Proposition 1



uses for this purpose the Markov blanket of H.
By building upon the Markov blanket, which in
essence is independent of the MAP set and of
the entered evidence, generally applicable state-
ments about the values of H are found. A dis-
advantage of building upon the Markov blanket,
however, is that maximally different distribu-
tions for H are examined, which decreases the
chances of fixing or excluding values.

By taking a blanket-like collection of variables
at a larger distance from the MAP variable H,
the marginal distributions examined for H are
likely to be less divergent, which serves to in-
crease the chances of fixing or excluding val-
ues of H as MAP values. A major disadvan-
tage of such a blanket, however, is that its size
tends to grow with the distance from H, which
will result in an infeasibly large number of in-
stantiations to be studied. For any blanket-like
collection, we observe that the MAP variables
of the problem have to either be in the blan-
ket or be d-separated from H by the blanket.
Proposition 2 builds upon this observation ex-
plicitly and considers only the instantiations of
the MAP blanket of the variable. The proposi-
tion thereby reduces the computations involved
in its application yet retains and even further
exploits the advantage of examining less diver-
gent marginal distributions over H. Note that
the values that can be fixed or excluded based
on the first proposition, will also be fixed or ex-
cluded based on the second proposition. It may
nevertheless still be worthwhile to exploit the
first proposition because, as stated before, with
this proposition values can be fixed or excluded
in general and more restricted and possibly less
computations are required.

So far we have argued that application of
the two propositions serves to reduce the search
space for a MAP problem by fixing variables to
particular values and by excluding other values
from further consideration. We would like to
mention that by fixing variables the graphical
structure of the Bayesian network under study
may fall apart into unconnected components,
for which the MAP problem can be solved sep-
arately. We illustrate the basic idea with our
running example.

Example 3. We consider again the MAP set
{H,E,G, I} for the Bayesian network from Fig-
ure 1. Now suppose that the variable H can be
fixed to a particular value. Then, by performing
evidence absorption of this value, the graphical
structure of the network falls apart into the two
components {A, I,H} and {B,C,D,E, F,G},
respectively. The MAP problem then decom-
poses into the problem with the MAP set {I}
for the first component and the problem with
the MAP set {E,G} for the second component;
both these problems now include the value of
H as further evidence. The search space thus is
further reduced from 27 to 3 + 9 = 12 instanti-
ations to be studied. �

4 Experiments

In the previous section, we have introduced a
method for preprocessing the MAP problem for
Bayesian networks. In this section, we perform
a preliminary study of the practicability of our
method by solving MAP problems for real net-
works using an exact algorithm. In Section 4.1
we describe the set-up of the experiments; we
review the results in Section 4.2.

4.1 The Experimental Set-up

In our experiments, we study the effects of our
preprocessing method on three real Bayesian
networks. We first report the percentages of
values that are fixed or excluded by exploit-
ing Proposition 1. We then compare the num-
bers of fixed variables as well as the numbers
of network propagations with and without pre-
processing, upon solving various MAP problems
with a state-of-the-art exact algorithm.

In our experiments, we use three real
Bayesian networks with a relatively high con-
nectivity; Table 1 reports the numbers of vari-
ables and values for these networks. The Wil-

son’s disease network (WD) is a small net-
work in medicine, developed for the diagnosis
of Wilson’s liver disease (Korver and Lucas,
1993). The classical swine fever network (CSF)
is a network in veterinary science, currently
under development, for the early detection of
outbreaks of classical swine fever in pig herds



(Geenen and Van der Gaag, 2005). The ex-
tended oesophageal cancer network (OESO+) is
a moderately-sized network in medicine, which
has been developed for the prediction of re-
sponse to treatment of oesophageal cancer (Ale-
man et al, 2000). For each network, we compute
MAP solutions for randomly generated MAP
sets with 25% and 50% of the network’s vari-
ables, respectively; for each size, five sets are
generated. We did not set any evidence.

For solving the various MAP problems in our
experiments, we use a basic implementation of
the exact branch-and-bound algorithm available
from Park and Darwiche (2003). This algorithm
solves the MAP problem exactly for most net-
works for which the Pr and MPE problems are
feasible. The algorithm constructs a depth-first
search tree by choosing values for subsequent
MAP variables, cutting off branches using an
upper bound. Since our preprocessing method
reduces the search space by fixing variables and
excluding values, it essentially serves to decrease
the depth of the tree and to diminish its branch-
ing factor.

4.2 Experimental results

In the first experiment, we established for each
network the number of values that could be
fixed or excluded by applying Proposition 1,
that is, by studying the marginal distributions
per variable given its Markov blanket. For com-
putational reasons, we decided not to investi-
gate variables for which the associated blanket
had more than 45 000 different instantiations;
this number is arbitrarily chosen. In the WD,
CSF and OESO+ networks, there were 0, 8 and
15 of such variables respectively.

The results of the first experiment are pre-
sented in Table 1. The table reports, for each
network, the total number of variables, the to-
tal number of values, the number of variables
for which a value could be fixed, and the num-
ber of values that could be fixed or excluded;
note that if, for example, for a ternary variable
a value can be fixed, then also two values can
be excluded. We observe that 17.1% to 19.0%
of the variables could be fixed to a particular
value. The number of values that could be fixed

Table 1: The numbers of fixed and excluded
values.

network #vars. #vals. #vars.f. #vals.f.+e.
WD 21 56 4(19.0%) 13(23.2%)
CSF 41 98 7(17.1%) 15(15.3%)

OESO+ 67 175 12(17.9%) 27(15.4%)

or excluded ranges between 15.3% and 23.2%.
We would like to stress that whenever a variable
can be fixed to a particular value, this result is
valid for any MAP problem that includes this
variable. The computations involved, therefore,
have to be performed only once.

In the second experiment, we compared for
each network the numbers of variables that
could be fixed by the two different preprocess-
ing steps; for Proposition 2, we restricted the
number of network propagations per MAP vari-
able to four because of the limited applicabil-
ity of the resulting information. We further es-
tablished the numbers of network propagations
of the exact branch-and-bound algorithm that
were forestalled by the preprocessing.

The results of the second experiment are pre-
sented in Table 2. The table reports in the two
leftmost columns, for each network, the sizes
of the MAP sets used and the average num-
ber of network propagations performed with-
out any preprocessing. In the subsequent two
columns, it reports the average number of vari-
ables that could be fixed to a particular value
by using Proposition 1 and the average num-
ber of network propagations performed by the
branch-and-bound algorithm after this prepro-
cessing step. In the fifth and sixth columns, the
table reports the numbers obtained with Propo-
sition 2; the sixth column in addition shows, be-
tween parenthesis, the average number of prop-
agations that are required for the application
of Proposition 2. In the final two columns of
the table, results for the two preprocessing steps
combined are reported: the final but one column
again mentions the number of variables that
could be fixed to a particular value by Proposi-
tion 1; it moreover mentions the average num-
ber of variables that could be fixed to a partic-
ular value by Proposition 2 after Proposition 1



had been used. The rightmost column reports
the average number of network propagations re-
quired by the branch-and-bound algorithm. We
would like to note that the additional computa-
tions required for Proposition 2 are restricted
network propagations; although the worst-case
complexity of these propagations is the same
as that of the propagations performed by the
branch-and-bound algorithm, their runtime re-
quirements may be considerably less.

From Table 2, we observe that the number of
network propagations performed by the branch-
and-bound algorithm grows with the number
of MAP variables, as expected. For the two
smaller networks, we observe in fact that the
number of propagations without preprocessing
equals the number of MAP variables plus one.
For the larger OESO+ network, the number of
network propagations performed by the algo-
rithm is much larger than the number of MAP
variables. This finding is not unexpected since
the MAP problem has a high computational
complexity. For the smaller networks, we fur-
ther observe that each variable that is fixed
by one of the preprocessing steps translates di-
rectly into a reduction of the number of prop-
agations by one. For the OESO+ network, we
find a larger reduction in the number of net-
work propagations per fixed variable. Our ex-
perimental results thus indicate that the num-
ber of propagations required by the branch-and-
bound algorithm indeed is decreased by fixing
variables to their MAP value.

With respect to using Proposition 1, we ob-
serve that in all networks under study a rea-
sonably number of variables could be fixed to
a MAP value. We did not take the number of
local propagations required for this proposition
into consideration because the computational
burden involved is amortised over future MAP
computations. With respect to using Proposi-
tion 2, we observe that for all networks and all
MAP sets the additional computations involved
outweigh the number of network computations
that are forestalled for the algorithm. This ob-
servation applies to using just Proposition 2 as
well as to using the proposition after Proposi-
tion 1 has been applied. We also observe that

fewer variables are fixed in the step based on
Proposition 2 than in the step based on Propo-
sition 1. This can be attributed to the limited
number of propagations used in the step based
on Proposition 2. We conclude that, for the net-
works under study, it has been quite worthwhile
to use Proposition 1 as a preprocessing step be-
fore actually solving the various MAP problems.
Because of the higher computational burden in-
volved and its relative lack of additional value,
the use of Proposition 2 has not been worthwhile
for our networks and associated problems.

To conclude, in Section 3 we observed that
fixing variables to their MAP value could serve
to partition a MAP problem into smaller prob-
lems. Such a partition did not occur in our
experiments. We would like to note, however,
that we studied MAP problems without evi-
dence only. We expect that in the presence of
evidence MAP problems will more readily be
partitioned into smaller problems.

5 Conclusions and discussion

The MAP problem for Bayesian networks is
the problem of finding for a set of variables
an instantiation of highest posterior probabil-
ity given the available evidence. The problem
has an unfavourable computational complexity,
being NPPP-hard in general. In this paper, we
showed that computation of the marginal pos-
terior probabilities of a variable H given its
Markov blanket may provide exact information
about its value in a MAP solution. This infor-
mation is valid for any MAP problem that in-
cludes the variable H. We further showed that
computation of the marginal probabilities of H

given its MAP blanket may also provide exact
information about its value. This information
is valid, however, for a more restricted class of
MAP problems. We argued that these results
can be exploited for preprocessing MAP prob-
lems before they are actually solved using any
state-of-the-art algorithm for this purpose.

We performed a preliminary experimental
study of the practicability of the preprocessing
steps by solving MAP problems for three differ-
ent Bayesian networks using an exact branch-



Table 2: The number of network propagations without and with preprocessing using Propositions
1 and 2.

Prop. 1 Prop. 2 Prop. 1+2
network #MAP #props. #vars. f. #props. #vars. f. #props. (add.) #vars. f. #props. (add.)
WD 5 6.0 1.2 4.8 0.0 6.0 (0.6) 1.2 + 0.0 4.8 (0.6)

10 11.0 2.4 8.6 1.0 10.0 (6.4) 2.4 + 0.2 8.4 (4.0)
CSF 10 11.0 2.0 9.0 1.0 10.0 (1.6) 2.0 + 0.4 8.6 (0.4)

20 21.0 3.4 17.6 1.6 19.4 (8.2) 3.4 + 0.6 17.0 (5.0)
OESO+ 17 24.8 3.4 18.4 0.8 22.0 (4.2) 3.4 + 0.0 18.4 (2.2)

34 49.8 5.8 40.8 1.8 47.4 (7.8) 5.8 + 0.4 40.0 (4.6)

and-bound algorithm. As expected, the num-
ber of network propagations required by the al-
gorithm is effectively decreased by fixing MAP
variables to their appropriate values. We found
that by building upon the concept of Markov
blanket for 17.1% to 19.0% of the variables a
MAP value could be fixed. Since the results of
this preprocessing step are applicable to all fu-
ture MAP computations and the computational
burden involved thus is amortised, we consid-
ered it worthwhile to perform this step for the
investigated networks. We would like to add
that, because the computations involved are
highly local, the step may also be feasibly ap-
plied to networks that are too large for the exact
MAP algorithm used in the experiments. With
respect to building upon the concept of MAP
blanket, we found that for the investigated net-
works and associated MAP problems, the com-
putations involved outweighed the reduction in
network propagations that was achieved. Since
the networks in our study were comparable with
respect to size and connectivity, further exper-
iments are necessary before any definitive con-
clusion can be drawn with respect to this pre-
processing step.

In our further research, we will expand the
experiments to networks with different numbers
of variables, different cardinality and diverging
connectivity. More specifically, we will investi-
gate for which types of network preprocessing is
most profitable. In our future experiments we
will also take the effect of evidence into account.
We will further investigate if the class of MAP
problems that can be feasibly solved can be ex-
tended by our preprocessing method. We hope
to report further results in the near future.
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