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Abstract

We propose a novel approach for solving continuous and hybrid Markov Decision Processes
(MDPs) based on two phases. In the first phase, an initial approximate solution is obtained
by partitioning the state space based on the reward function, and solving the resulting
discrete MDP. In the second phase, the initial abstraction is refined and improved. States
with high variance in their value with respect to neighboring states are partitioned, and
the MDP is solved locally to improve the policy. In our approach, the reward function and
transition model are learned from a random exploration of the environment, and can work
with both, pure continuous spaces; or hybrid, with continuous and discrete variables. We
demonstrate empirically the method in several simulated robot navigation problems, with
different sizes and complexities. Our results show an approximate optimal solution with
an important reduction in state size and solution time compared to a fine discretization
of the space.

1 Introduction

Markov Decision Processes (MDPs) have de-
veloped as a standard method for decision-
theoretic planning. Traditional MDP solution
techniques have the drawback that they re-
quire an explicit state representation, limiting
their applicability to real-world problems. Fac-
tored representations (Boutilier et al., 1999) ad-
dress this drawback via compactly specifying
the state-space in factored form by using dy-
namic Bayesian networks or decision diagrams.
Such Factored MDPs can be used to repre-
sent in a more compact way exponentially large
state spaces. The algorithms for planning using
MDPs, however, still run in time polynomial in
the size of the state space or exponential in the
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number of state-variables; and do not apply to
continuous domains.

Many stochastic processes are more naturally
defined using continuous state variables which
are solved as Continuous Markov Decision Pro-
cesses (CMDPs) or general state-space MDPs
by analogy with general state-space Markov
chains. In this approach the optimal value func-
tion satisfies the Bellman fixed point equation:

V (s) = maxa[R(s, a) + γ

∫
s′

p(s′|s, a)V (s′)ds′].

Where s represents the state, a a finite set of ac-
tions, R the immediate reward, V the expected
value, P the transition function, and γ a dis-
count factor.

The problem with CMDPs is that if the con-
tinuous space is discretized to find a solution,
the discretization causes yet another level of ex-



ponential blow up. This “curse of dimensional-
ity” has limited the use of the MDP framework,
and overcoming it has become a relevant topic of
research. Existing solutions attempt to replace
the value function or the optimal policy with a
finite approximation. Two recent methods to
solve a CMDPs are known as grid-based MDP
discretizations and parametric approximations.
The idea behind the grid-based MDPs is to dis-
cretize the state-space in a set of grid points and
approximate value functions over such points.
Unfortunately, classic grid algorithms scale up
exponentially with the number of state variables
(Bonet and Pearl, 2002). An alternative way is
to approximate the optimal value function V (x)
with an appropriate parametric function model
(Bertsekas and Tsitsiklis, 1996). The parame-
ters of the model are fitted iteratively by ap-
plying one step Bellman backups to a finite set
of state points arranged on a fixed grid or ob-
tained through Monte Carlo sampling. Least
squares criterion is used to fit the parameters of
the model. In addition to parallel updates and
optimizations, on-line update schemes based on
gradient descent, e.g., (Bertsekas and Tsitsiklis,
1996) can be used to optimize the parameters.
The disadvantages of these methods are their
instability and possible divergence (Bertsekas,
1995).

Several authors, e.g., (Dean and Givan,
1997), use the notions of abstraction and ag-
gregation to group states that are similar with
respect to certain problem characteristics to fur-
ther reduce the complexity of the representation
or the solution. (Feng et al., 2004) proposes a
state aggregation approach for exploiting struc-
ture in MDPs with continuous variables where
the state space is dynamically partitioned into
regions where the value function is the same
throughout each region. The technique comes
from POMDPs to represent and reason about
linear surfaces effectively. (Hauskrecht and
Kveton, 2003) show that approximate linear
programming is able to solve not only MDPs
with finite states, but also be successfully ap-
plied to factored continuous MDPs. Similarly,
(Guestrin et al., 2004) presents a framework
that also exploits structure to model and solve

factored MDPs although he extends the tech-
nique to be applied to both discrete and contin-
uous problems in a collaborative setting.

Our approach is related to these works, how-
ever it differs on several aspects. First, it is
based on qualitative models (Kuipers, 1986),
which are particularly useful for domains with
continuous state variables. It also differs in the
way the abstraction is built. We use training
data to learn a decision tree for the reward
function, from which we deduce an abstraction
called qualitative states. This initial abstrac-
tion is refined and improved via a local itera-
tive process. States with high variance in their
value with respect to neighboring states are par-
titioned, and the MDP is solved locally to im-
prove the policy. At each stage in the refine-
ment process, only one state is partitioned, and
the process finishes when any potential partition
does not change the policy. In our approach,
the reward function and transition model are
learned from a random exploration of the en-
vironment, and can work with both, pure con-
tinuous spaces; or hybrid, with continuous and
discrete variables.

We have tested our method in simulated
robot navigation problems, in which the state
space is continuous, with several scenarios with
different sizes and complexities. We compare
the solution of the models obtained with the
initial abstraction and the final refinement, with
the solution of a discrete MDP obtained with a
fine discretization of the state space, in terms of
differences in policy, value and complexity. Our
results show an approximate optimal solution
with an important reduction in state size and
solution time compared to a fine discretization
of the space.

The rest of the paper is organized as follows.
The next section gives a brief introduction to
MDPs. Section 3 develops the abstraction pro-
cess and Section 4 the refinement stage. In Sec-
tion 5 the empirical evaluation is described. We
conclude with a summary and directions for fu-
ture work.



2 Markov Decision Processes

A Markov Decision Process (MDP) (Puterman,
1994) models a sequential decision problem, in
which a system evolves in time and is controlled
by an agent. The system dynamics is governed
by a probabilistic transition function that maps
states and actions to states. At each time, an
agent receives a reward that depends on the cur-
rent state and the applied action. Thus, the
main problem is to find a control strategy or
policy that maximizes the expected reward over
time.

Formally, an MDP is a tuple M =<
S,A,Φ, R >, where S is a finite set of states
{s1, . . . , sn}. A is a finite set of actions for all
states. Φ : A × S × S is the state transition
function specified as a probability distribution.
The probability of reaching state s′ by perform-
ing action a in state s is written as Φ(a, s, s′).
R : S × A → < is the reward function. R(s, a)
is the reward that the agent receives if it takes
action a in state s. A policy for an MDP is
a mapping π : S → A that selects an action
for each state. A solution to an MDP is a pol-
icy that maximizes its expected value. For the
discounted infinite–horizon case with any given
discount factor γ ∈ [0, 1), there is a policy V ∗

that is optimal regardless of the starting state
that satisfies the Bellman equation (Bellman,
1957):

V ∗(s) = maxa{R(s, a)+γΣs′∈SΦ(a, s, s′)V ∗(s′)}

Two popular methods for solving this equa-
tion and finding an optimal policy for an MDP
are: (a) value iteration and (b) policy iteration
(Puterman, 1994).

2.1 Factored MDPs

A common problem with the MDP formalism
is that the state space grows exponentially with
the number of domain variables, and its infer-
ence methods grow in the number of actions.
Thus, in large problems, MDPs becomes im-
practical and inefficient. Factored represen-
tations avoid enumerating the problem state
space, producing a more concise representa-
tion that makes solving more complex problems

tractable.

In a factored MDP, the set of states is de-
scribed via a set of random variables X =
{X1, . . . , Xn}, where each Xi takes on values
in some finite domain Dom(Xi). A state x de-
fines a value xi ∈ Dom(Xi) for each variable
Xi. Thus, the set of states S = Dom(Xi)
is exponentially large, making it impractical
to represent the transition model explicitly as
matrices. Fortunately, the framework of dy-
namic Bayesian networks (DBN) (Dean and
Kanazawa, 1989) gives us the tools to describe
the transition model function concisely. In these
representations, the post-action nodes (at the
time t + 1) contain matrices with the probabil-
ities of their values given their parents’ values
under the effects of an action.

3 Qualitative MDPs

3.1 Qualitative states

We define a qualitative state space Q as a set of
states q1, q2, ..qn that have different utility prop-
erties. These properties map the state space
into a set of partitions, such that each partition
corresponds to a group of continuous states with
a similar reward value. In a qualitative MDP, a
state partition qi is a region bounded by a set
of constraints over the continuous dimensions in
the state space. The relational operators used
in this approach are < and ≥. For example,
assuming that the immediate reward is a func-
tion of the linear position in a robot navigation
domain, a qualitative state could be a region
in an x0 − x1 coordinates system bounded by
the constraints: x0 ≥ val(x0) and x1 ≥ val(x1),
expressing that the current x0 coordinate is lim-
ited by the interval [val(x0),∞], and the x1 co-
ordinate by the interval [val(x1),∞]. It is evi-
dent that a qualitative state can cover a large
number of states (if we consider a fine discretiza-
tion) with similar properties.

Similarly to the reward function in a factored
MDP, the state space Q is represented by a deci-
sion tree (Q–tree). In our approach, the decision
tree is automatically induced from data. Each
leaf in the induced decision tree is labeled with
a new qualitative state. Even for leaves with the



same reward value, we assign a different qualita-
tive state value. This generates more states but
at the same time creates more guidance that
helps produce more adequate policies. States
with similar reward are partitioned so each q–
state is a continuous region. Figure 1 shows
this tree transformation in a two dimensional
domain.

Figure 1: Transformation of the reward deci-
sion tree into a Q-tree. Nodes in the tree rep-
resent continuous variables and edges evaluate
whether this variable is less or greater than a
particular bound.

Each branch in the Q–tree denotes a set of
constraints for each partition qi. Figure 2 illus-
trates the constraints associated to the example
presented above, and its representation in a 2-
dimensional space.

Figure 2: In a Q-tree, branches are constraints
and leaves are qualitative states. A graphical
representation of the tree is also shown. Note
that when an upper or lower variable bound is
infinite, it must be understood as the upper or
lower variable bound in the domain.

3.2 Qualitative MDP Model

Specification

We can define a qualitative MDP as a factored
MDP with a set of hybrid qualitative–discrete

factors. The qualitative state space Q, is an
additional factor that concentrates all the con-
tinuous variables. The idea is to substitute
all these variables by this abstraction to re-
duce the dimensionality of the state space. Ini-
tially, only the continuous variables involved in
the reward function are considered, but, as de-
scribed in Section 4, other continuous variables
can be incorporated in the refinement stage.
Thus, a Qualitative MDP state is described in
a factored form as X = {X1, . . . , Xn, Q}, where
X1, . . . , Xn are the discrete factors, and Q is a
factor that represents the relevant continuous
dimensions.

3.3 Learning Qualitative MDPs

The Qualitative MDP model is learned from
data based on a random exploration of the en-
vironment with a 10% Gaussian noise intro-
duced on the actions outcomes. We assume that
the agent can explore the state space, and for
each state–action can receive some immediate
reward. Based on this random exploration, an
initial partition, Q0, of the continuous dimen-
sions is obtained, and the reward function and
transition functions are induced.

Given a set of state transition represented as
a set of random variables, Oj = {Xt,A,Xt+1},
for j = 1, 2, ...,M , for each state and action A
executed by an agent, and a reward (or cost) Rj

associated to each transition, we learn a quali-
tative factored MDP model:

1. From a set of examples {O,R} obtain a
decision tree, RDT , that predicts the re-
ward function R in terms of continuous
and discrete state variables, X1, . . . , Xk, Q.
We used J48, a Java re- implementation of
C4.5 (Quinlan, 1993) in Weka, to induce a
pruned decision tree.

2. Obtain from the decision tree, RDT , the
set of constraints for the continuous vari-
ables relevant to determine the qualitative
states (q–states) in the form of a Q-tree. In
terms of the domain variables, we obtain
a new variable Q representing the reward-
based qualitative state space whose values
are the q–states.



3. Qualify data from the original sample in
such a way that the new set of attributes
are the Q variables, the remaining discrete
state variables not included in the decision
tree, and the action A. This transformed
data set can be called the qualified data set.

4. Format the qualified data set in such a way
that the attributes follow a temporal causal
ordering. For example variable Qt must be
set before Qt+1, X1t before X1t+1, and so
on. The whole set of attributes should be
the variable Q in time t, the remaining sys-
tem variables in time t, the variable Q in
time t+1, the remaining system variables
in time t+1, and the action A.

5. Prepare data for the induction of a 2-stage
dynamic Bayesian net. According to the
action space dimension, split the qualified
data set into |A| sets of samples for each
action.

6. Induce the transition model for each action,
Aj , using the K2 algorithm (Cooper and
Herskovits, 1992).

This initial model represents a high-level ab-
straction of the continuous state space and can
be solved using a standard solution technique,
such as value iteration, to obtain the optimal
policy. This approach has been successfully ap-
plied in some domains. However, in some cases,
our abstraction can miss some relevant details
of the domain and consequently produce sub-
optimal policies. We improve this initial parti-
tion through a refinement stage described in the
next section.

4 Qualitative State Refinement

We have designed a value-based algorithm that
recursively selects and partitions abtract states
with high utility variance. Given an initial
partition and a solution for the qualitative
MDP, the algorithm proceeds as follows:

While there is an unmarked partition greater
than the minimum size:

1. Select an unmarked partition (state) with
the highest variance in its utility value with
respect to its neighbours

2. Select the dimension (state variable) with
the highest difference in utility value with
its contiguous states

3. Bisect the dimension (divide the state in
two equal-size parts)

4. Solve the new MDP

5. If the new MDP has the same policy as
before, mark the original state before the
partition and return to the previous MDP,
otherwise, accept the refinement and con-
tinue.

The minimum size of a state is defined by the
user and is domain dependent. For example, in
the robot navigation domain, the minimum size
depends on the smallest goal (area with certain
reward) or on the robot step size. A graphical
representation of this process is shown in fig-
ure 3. Figure 3 (a) shows an initial partition
for two qualitative variables where each quali-
tative state is a set of ground states with simi-
lar reward. Figure 3 (b) shows the refined two-
dimension state space after applying the split-
ting state algorithm.

Figure 3: Qualitative refinement for a two-
dimension state space. a) initial partition by
reward. b) refined state space

5 Experimental Results

We tested our approach in a robot navigation
domain using a simulated environment. In this
setting goals are represented as light-colored
square regions with positive immediate reward,
while non-desirable regions are represented by



Figure 4: Abstraction and refinement process. Upper left: reward regions. Upper right: explo-
ration process. Lower left: initial qualitative states and their corresponding policies, where u=up,
d=down, r=right, and l=left. Lower right: refined partition.

dark-colored squares with negative reward. The
remaining regions in the navigation area receive
0 reward (white). Experimentally, we express
the size of a rewarded (non zero reward) as a
function of the navigation area. Rewarded re-
gions are multivalued and can be distributed
randomly over the navigation area. The num-
ber of rewarded squares is also variable. Since
obstacles are not considered robot states, they
are not included.

The robot sensor system included the x-y
position, angular orientation, and navigation
bounds detection. In a set of experiments the
possible actions are discrete orthogonal move-
ments to the right, left, up, and down. Fig-
ure 4 upper left shows an example of a navi-
gation problem with 26 rewarded regions. The
reward function can have six possible values. In
this example, goals are represented as different-
scale light colors. Similarly, negative rewards
are represented with different-scale dark colors.
The planning problem is to automatically ob-
tain an optimal policy for the robot to achieve
its goals avoiding negative rewarded regions.

The qualitative representation and refine-
ment were tested with several problems of dif-
ferent sizes and complexities, and compared to a
fine discretization of the environment in terms
of precision and complexity. The precision is
evaluated by comparing the policies and values
per state. The policy precision is obtained by
comparing the policies generated with respect
to the policy obtained from a fine discretiza-
tion. That is, we count the number of fine cells
in which the policies are the same:

PP = (NEC/NTC)× 100,

where PP is the policy precision in percentage,
NEC is the number of fine cells with the same
policy, and NTC is the total number of fine
cells. This measure is pessimistic because in
some states it is possible for more than one ac-
tion to have the same or similar value, and in
this measure only one is considered correct.

The utility error is calculated as follows. The
utility values of all the states in each represen-
tation is first normalized. The sum of the abso-
lute differences of the utility values of the corre-



Table 1: Description of problems and comparison between a “normal” discretization and our qual-
itative discretization.

Problem Discrete Qualitative

Learning Inference Learning Inference

no. reward no. no. no. time no. time no. time no. time
id reward size reward samples states (ms) itera- (ms) states (ms) itera- (ms)

cells (% dim) values tions tions
1 2 20 3 40,000 25 7,671 120 20 8 2,634 120 20
2 4 20 5 40,000 25 1,763 123 20 13 2,423 122 20
3 10 10 3 40,000 100 4,026 120 80 26 2,503 120 20
4 6 5 3 40,000 400 5,418 120 1,602 24 4,527 120 40
5 10 5 5 28,868 400 3,595 128 2,774 29 2,203 127 60
6 12 5 4 29,250 400 7,351 124 7,921 46 2,163 124 30
7 14 3.3 9 50,000 900 9,223 117 16,784 60 4,296 117 241

sponding states is evaluated and averaged over
all the differences.

Figure 4 shows the abstraction and refine-
ment process for the motion planning problem
presented above. A color inversion and gray
scale format is used for clarification. The upper
left figure shows the rewarded regions. The up-
per right figure illustrates the exploration pro-
cess. The lower left figure shows the initial qual-
itative states and their corresponding policies.
The lower right figure shows the refined parti-
tion.

Table 1 presents a comparison between the
behavior of seven problems solved with a sim-
ple discretization approach and our qualitative
approach. Problems are identified with a num-
ber as shown in the first column. The first
five columns describe the characteristics of each
problem. For example, problem 1 (first row) has
2 reward cells with values different from zero
that occupy 20% of the number of cells, the dif-
ferent number of reward values is 3 (e.g., -10,
0 and 10) and we generated 40,000 samples to
build the MDP model.

Table 2 presents a comparison between the
qualitative and the refined representation. The
first three columns describe the characteristics
of the qualitative model and the following de-
scribe the characteristics with our refinement
process. They are compared in terms of utility
error in %, the policy precision also in %, and
the time spent in the refinement in minutes.

As can be seen from Table 1, there is a signif-
icant reduction in the complexity of the prob-
lems using our abstraction approach. This can
be clearly appreciated from the number of states

and processing time required to solve the prob-
lems. This is important since in complex do-
mains where it can be difficult to define an ade-
quate abstraction or solve the resulting MDP
problem, one option is to create abstractions
and hope for suboptimal policies. To evaluate
the quality of the results Table 2 shows that the
proposed abstraction produces on average only
9.17% error in the utility value when compared
against the values obtained from the dicretized
problem as can be seen in Table 2. Finally, since
an initial refinement can miss some relevant as-
pects of the domain, a refinement process may
be necessary to obtain more adequate policies.
Our refinement process is able to maintain or
improve the utility values in all cases. The per-
centage of policy precision with respect to the
initial qualitative model can sometimes decrease
with the refinement process. This is due to our
pessimistic measure.

Table 2: Comparative results between the ini-
tial abstraction and the proposed refinement
process.

Qualitative Refinement

util. policy util. policy refin.
id error precis. error precis. time

(%) (%) (%) (%) (min)
1 7.38 80 7.38 80 0.33
2 9.03 64 9.03 64 0.247
3 10.68 64 9.45 74 6.3
4 12.65 52 8.82 54.5 6.13
5 7.13 35 5.79 36 1.23
6 11.56 47.2 11.32 46.72 10.31
7 5.78 44.78 5.45 43.89 23.34



6 Conclusions and Future Work

In this paper, a new approach for solving con-
tinuous and hybrid infinite-horizon MDPs is
described. In the first phase we use an ex-
ploration strategy of the environment and a
machine learning approach to induce an ini-
tial state abstraction. We then follow a refine-
ment process to improve on the utility value.
Our approach creates significant reductions in
space and time allowing to solve quickly rela-
tively large problems. The utility values on our
abstracted representation are reasonably close
(less than 10%) to those obtained using a fine
discretization of the domain. A new refinement
process to improve the results of the initial pro-
posed abstraction is also presented. It always
improves or at least maintains the utility val-
ues obtained from the qualitative abstraction.
Although tested on small solvable problems for
comparison purposes, the approach can be ap-
plied to more complex domains where a simple
dicretization approach is not feasible.

As future research work we will like to im-
prove our refinement strategy to select a better
segmentation of the abstract states and use an
alternative search strategy. We also plan to test
our approach in other domains.
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