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Abstract

Causal independence modelling is a well-known method both for reducing the size of prob-
ability tables and for explaining the underlying mechanisms in Bayesian networks. In this
paper, we propose an application of an extended class of causal independence models,
causal independence models based on the symmetric Boolean function, for classification.
We present an EM algorithm to learn the parameters of these models, and study con-
vergence of the algorithm. Experimental results on the Reuters data collection show the
competitive classification performance of causal independence models based on the sym-
metric Boolean function in comparison to noisy OR model and, consequently, with other
state-of-the-art classifiers.

1 Introduction

Bayesian networks (Pearl, 1988) are well-
established as a sound formalism for represent-
ing and reasoning with probabilistic knowledge.
However, because the number of conditional
probabilities for the node grows exponentially
with the number of its parents, it is usually
unreliable if not infeasible to specify the con-
ditional probabilities for the node that has a
large number number of parents. The task of as-
sessing conditional probability distributions be-
comes even more complex if the model has to in-
tegrate expert knowledge. While learning algo-
rithms can be forced to take into account an ex-
pert’s view, for the best possible results the ex-
perts must be willing to reconsider their ideas in
light of the model’s ‘discovered’ structure. This
requires a clear understanding of the model by
the domain expert. Causal independence mod-
els (Dı́ez, 1993; Heckerman and Breese, 1994;
Srinivas, 1993; Zhang and Poole, 1996) can both
limit the number of conditional probabilities to
be assessed and provide the ability for models to
be understood by domain experts in the field.
The main idea of causal independence models
is that causes influence a given common effect

through intermediate variables and interaction
function.

Causal independence assumptions are of-
ten used in practical Bayesian network mod-
els (Kappen and Neijt, 2002; Shwe et al.,
1991). However, most researchers restrict them-
selves to using only the logical OR and log-
ical AND operators to define the interaction
among causes. The resulting probabilistic sub-
models are called noisy OR and noisy AND ;
their underlying assumption is that the pres-
ence of either at least one cause or all causes
at the same time give rise to the effect. Sev-
eral authors proposed to expand the space of in-
teraction functions by other symmetric Boolean
functions: the idea was already mentioned but
not developed further in (Meek and Heckerman,
1997), analysis of the qualitative patterns was
presented in (Lucas, 2005), and assessment of
conditional probabilities was studied in (Jurge-
lenaite et al., 2006).

Even though for some real-world problems
the intermediate variables are observable (see
Visscher et al. (2005)), in many problems these
variables are latent. Therefore, conditional
probability distributions depend on unknown
parameters which must be estimated from data,



using maximum likelihood (ML) or maximum a
posteriori (MAP). One of the most widespread
techniques for finding ML or MAP estimates is
the expectation-maximization (EM) algorithm.
Meek and Heckerman (1997) provided a gen-
eral scheme how to use the EM algorithm to
compute the maximum likelihood estimates of
the parameters in causal independence mod-
els assumed that each local distribution func-
tion is collection of multinomial distributions.
Vomlel (2006) described the application of the
EM algorithm to learn the parameters in the
noisy OR model for classification.

The application of an extended class of causal
independence models, namely causal indepen-
dence models with a symmetric Boolean func-
tion as an interaction function, to classification
is the main topic of this paper. These mod-
els will further be referred to as the symmetric
causal independence models. We present an EM
algorithm to learn the parameters in symmet-
ric causal independence models, and study con-
vergence of the algorithm. Experimental results
show the competitive classification performance
of the symmetric causal independence models
in comparison with the noisy OR classifier and,
consequently, with other widely-used classifiers.

The remainder of this paper is organised as
follows. In the following section, we review
Bayesian networks and discuss the semantics of
symmetric causal independence models. In Sec-
tion 3, we state the EM algorithm for finding
the parameters in symmetric causal indepen-
dence models. The maxima of the log-likelihood
function for the symmetric causal independence
models are examined in Section 4. Finally, Sec-
tion 5 presents the experimental results, and
conclusions are drawn in Section 6.

2 Symmetric Boolean Functions for

Modelling Causal Independence

2.1 Bayesian Networks

A Bayesian network B = (G,Pr) represents a
factorised joint probability distribution on a set
of random variables V. It consists of two parts:
(1) a qualitative part, represented as an acyclic
directed graph (ADG) G = (V(G),A(G)),

C1 C2 . . . Cn

H1 H2 . . . Hn

E f

Figure 1: Causal independence model

where there is a 1–1 correspondence between
the vertices V(G) and the random variables
in V, and arcs A(G) represent the conditional
(in)dependencies between the variables; (2) a
quantitative part Pr consisting of local proba-
bility distributions Pr(V | π(V )), for each vari-
able V ∈ V given the parents π(V ) of the corre-
sponding vertex (interpreted as variables). The
joint probability distribution Pr is factorised ac-
cording to the structure of the graph, as follows:

Pr(V) =
∏

V ∈V

Pr(V | π(V )).

Each variable V ∈ V has a finite set of mutually
exclusive states. In this paper, we assume all
variables to be binary; as an abbreviation, we
will often use v+ to denote V = > (true) and
v− to denote V = ⊥ (false). We interpret >
as 1 and ⊥ as 0 in an arithmetic context. An
expression such as

∑

ψ(H1,...,Hn)=>

g(H1, . . . , Hn)

stands for summing g(H1, . . . , Hn) over all pos-
sible values of the variables Hk for which the
constraint ψ(H1, . . . , Hn) = > holds.

2.2 Semantics of Symmetric Causal

Independence Models

Causal independence is a popular way to spec-
ify interactions among cause variables. The
global structure of a causal independence model
is shown in Figure 1; it expresses the idea that
causes C1, . . . , Cn influence a given common ef-
fect E through hidden variables H1, . . . , Hn and
a deterministic function f , called the interac-
tion function. The impact of each cause Ci
on the common effect E is independent of each



other cause Cj , j 6= i. The hidden variable Hi

is considered to be a contribution of the cause
variable Ci to the common effect E. The func-
tion f represents in which way the hidden ef-
fects Hi, and indirectly also the causes Ci, in-
teract to yield the final effect E. Hence, the
function f is defined in such a way that when
a relationship, as modelled by the function f ,
between Hi, i = 1, . . . , n, and E = > is sat-
isfied, then it holds that f(H1, . . . , Hn) = >.
It is assumed that Pr(e+ | H1, . . . , Hn) = 1 if
f(H1, . . . , Hn) = >, and Pr(e+ | H1, . . . , Hn) =
0 if f(H1, . . . , Hn) = ⊥.

A causal independence model is defined in
terms of the causal parameters Pr(Hi | Ci), for
i = 1, . . . , n and the function f(H1, . . . , Hn).
Most papers on causal independence models as-
sume that absent causes do not contribute to
the effect (Heckerman and Breese, 1994; Pearl,
1988). In terms of probability theory this im-
plies that it holds that Pr(h+

i | c−i ) = 0; as a
consequence, it holds that Pr(h−i | c−i ) = 1. In
this paper we make the same assumption.

In situations in which the model does not cap-
ture all possible causes, it is useful to introduce
a leaky cause which summarizes the unidentified
causes contributing to the effect and is assumed
to be always present (Henrion, 1989). We model
this leak term by adding an additional input
Cn+1 = 1 to the data; in an arithmetic context
the leaky cause is treated in the same way as
identified causes.

The conditional probability of the occurrence
of the effect E given the causes C1, . . . , Cn, i.e.,
Pr(e+ | C1, . . . , Cn), can be obtained from the
causal parameters Pr(Hl | Cl) as follows (Zhang
and Poole, 1996):

Pr(e+ | C1, . . . , Cn)

=
∑

f(H1,...,Hn)=>

n
∏

i=1

Pr(Hi | Ci). (1)

In this paper, we assume that the function f in
Equation (1) is a Boolean function. However,
there are 22n

different n-ary Boolean functions
(Enderton, 1972; Wegener, 1987); thus, the po-
tential number of causal interaction models is
huge. However, if we assume that the order of

the cause variables does not matter, the Boolean
functions become symmetric (Wegener, 1987)
and the number reduces to 2n+1.

An important symmetric Boolean function is
the exact Boolean function εl, which has func-
tion value true, i.e. εl(H1, . . . , Hn) = >, if
∑n
i=1 ν(Hi) = l with ν(Hi) equal to 1, if Hi

is equal to true and 0 otherwise. A symmetric
Boolean function can be decomposed in terms
of the exact functions εl as (Wegener, 1987):

f(H1, . . . , Hn) =
n
∨

i=0

εi(H1, . . . , Hn) ∧ γi (2)

where γi are Boolean constants depending only
on the function f . For example, for the Boolean
function defined in terms of the OR operator we
have γ0 = ⊥ and γ1 = . . . = γn = >.

Another useful symmetric Boolean function is
the threshold function τk, which simply checks
whether there are at least k trues among the ar-
guments, i.e. τk(I1, . . . , In) = >, if

∑n
j=1 ν(Ij) ≥

k with ν(Ij) equal to 1, if Ij is equal to true
and 0 otherwise. To express it in the Boolean
constants we have: γ0 = · · · = γk−1 = ⊥ and
γk = · · · = γn = >. Causal independence model
based on the Boolean threshold function further
will be referred to as the noisy threshold models.

2.3 The Poisson Binomial Distribution

Using the property of Equation (2) of the sym-
metric Boolean functions, the conditional prob-
ability of the occurrence of the effect E given the
causes C1, . . . , Cn can be decomposed in terms
of probabilities that exactly l hidden variables
H1, . . . , Hn are true as follows:

Pr(e+ | C1, . . . , Cn)

=
∑

0 ≤ l ≤ n

γl

∑

εl(H1,...,Hn)

n
∏

i=1

Pr(Hi | Ci).

Let l denote the number of successes in n

independent trials, where pi is a probability
of success in the ith trial, i = 1, . . . , n; let
p = (p1, . . . , pn), then B(l;p) denotes the Pois-
son binomial distribution (Le Cam, 1960; Dar-



roch, 1964):

B(l;p) =
n
∏

i=1

(1 − pi)
∑

1≤j1<...<jl≤n

l
∏

z=1

pjz
1 − pjz

.

Let us define a vector of probabilistic param-
eters p(C1, . . . , Cn) = (p1, . . . , pn) with pi =
Pr(h+

i | Ci). Then the connection between the
Poisson binomial distribution and the class of
symmetric causal independence models is as fol-
lows.

Proposition 1. It holds that:

Pr(e+ | C1, . . . , Cn) =
n
∑

i=0

B(i;p(C1, . . . , Cn))γi.

3 EM Algorithm

Let D = {x1, . . . ,xN} be a data set of indepen-
dent and identically distributed settings of the
observed variables in a symmetric causal inde-
pendence model, where

xj = (cj , ej) = (cj1, . . . , c
j
n, e

j).

We assume that no additional information
about the model is available. Therefore, to learn
the parameters of the model we maximize the
conditional log-likelihood

CLL(θθ) =
N
∑

j=1

ln Pr(ej | cj , θθ).

The expectation-maximization (EM) algo-
rithm (Dempster et al., 1977) is a general
method to find the maximum likelihood esti-
mate of the parameters in probabilistic models,
where the data is incomplete or the model has
hidden variables.

Let θθ = (θ1, . . . , θn) be the parameters of the
symmetric causal independence model where
θi = Pr(h+

i | c+i ). Then, after some calcula-
tions, the (z + 1)-th iteration of the EM algo-
rithm for symmetric causal independence mod-
els is given by:

Expectation step: For every data sample
xj = (cj , ej) with j = 1, . . . , N , we form

p(z,j) = (p
(z,j)
1 , . . . , p(z,j)

n ) where p
(z,j)
i = θ

(z)
i c

j
i .

Let us define

p
(z,j)
\k = (p

(z,j)
1 , . . . , p

(z,j)
k−1 , p

(z,j)
k+1 , . . . , p

(z,j)
n ).

Subsequently, for all hidden variables Hk with
k = 1, . . . , n we compute the probability
Pr(h+

k | ej , cj , θθ(z)) where

Pr(h+
k | ej , cj , θθ(z))

=
p
(z,j)
k

∑n−1
i=0 B

(

i;p
(z,j)
\k

)

γi+1
∑n
i=0 B

(

i;p(z,j)
)

γi
if ej = 1,

and

Pr(h+
k | ej , cj , θθ(z))

=
p
(z,j)
k

(

1 −
∑n−1
i=0 B

(

i;p
(z,j)
\k

)

γi+1

)

1 −
∑n
i=0 B

(

i;p(z,j)
)

γi
if ej = 0.

Maximization step: Update the parameter
estimates for all k = 1, . . . , n:

θk =

∑

1≤j≤N c
j
kPr(h+

k | ej , cj , θθ(z))
∑

1≤j≤N c
j
k

.

4 Analysis of the Maxima of the

Log-likelihood Function

Generally, there is no guarantee that the EM
algorithm will converge to a global maximum of
log-likelihood. In this section, we investigate
the maxima of the conditional log-likelihood
function for symmetric causal independence
models.

4.1 Noisy OR and Noisy AND Models

In this section we will show that the conditional
log-likelihood for the noisy OR and the noisy
AND models has only one maximum. Since
the conditional log-likelihood for these models
is not necessarily concave we will use a mono-
tonic transformation to prove the absence of the
stationary points other than global maxima.

First, we establish a connection between the
maxima of the log-likelihood function and the
maxima of the corresponding composite func-
tion.



Proposition 2. (Global optimality condi-
tion for concave functions (Boyd and
Vandenberghe, 2004))
Suppose h(q) : Q → < is concave and differen-
tiable on Q. Then q∗ ∈ Q is a global maximum
if and only if

∇h(q∗) =

(

∂h(q∗)

∂q1
, . . . ,

∂h(q∗)

∂qn

)T

= 0.

Further we consider the function

CLL(θθ) = h(q(θθ)).

Let CLL(θθ) and h(q(θθ)) be twice differentiable
functions, and let q(θθ) be a differentiable, in-
jective function where θθ(q) is its inverse. Then
the following relationship between the station-
ary points of the functions CLL and h holds.

Lemma 1. Suppose, θθ∗ is a stationary point of
CLL(θθ). Then there is a corresponding point
q(θθ∗), which is a stationary point of h(q(θθ)).

Proof. Since the function q(θθ) is differentiable

and injective, its Jacobian matrix ∂(q1,...,qn)
∂(θ1,...,θn) is

positive definite. Therefore, from the chain
rule it follows that if ∇CLL(θθ∗) = 0, then
∇h(q(θθ∗)) = 0.

Proposition 3. If h(q(θθ)) is concave and θθ∗

is a stationary point of CLL(θθ), then θθ∗ is a
global maximum.

Proof. If θθ∗ is a stationary point, then from
Lemma 1 it follows that q(θθ∗) is also station-
ary. From the global optimality condition for
concave functions the stationary point q(θθ∗) is
a maximum of h(q(θθ)), thus from the definition
of global maximum we get that for all θθ

CLL(θθ) = h(q(θθ)) ≤ h(q(θθ∗)) = CLL(θθ∗).

Given Proposition 3 the absence of the lo-
cal optima can be proven by introducing such
a monotonic transformation q(θθ) that the com-
posite function h(q(θθ)) would be concave. As

it is a known result that the Hessian matrix of
the log-likelihood function for logistic regression
is negative-semidefinite, and hence the problem
has no local optima, we will use transformations
that allow us to write the log-likelihood for the
noisy OR and noisy AND models in a similar
form as that of the logistic regression model.

The conditional probability of the effect in a
noisy OR model can be written:

Pr(e+ | c, θθ) = 1 −
n
∏

i=1

Pr(h−i | ci)

= 1 −
n
∏

i=1

(1 − θi)
ci = 1 − exp

(

n
∑

i=1

ln(1 − θi)ci

)

.

Let us choose a monotonic transformation qi =
− ln(1 − θi), i = 1, . . . , n. Then the conditional
probability of the effect in a noisy OR model
equals

Pr(e+ | c,q) = 1 − e−qT c.

Let us define zj = qT cj and f(zj) = Pr(e+ |
cj ,q), then the function h reads

h(q) =
N
∑

j=1

ej ln f(zj) + (1 − ej) ln(1 − f(zj)). (3)

Since f ′(zj) = 1 − f(zj), the first derivative of
h is

∂h(q)

∂q
=

N
∑

j=1

f ′(zj)(ej − f(zj))

f(zj)(1 − f(zj))
cj

=
N
∑

j=1

ej − f(zj)

f(zj)
cj .

To prove that the function h is concave we need
to prove that its Hessian matrix is negative
semidefinite. The Hessian matrix of h reads

∂2h(q)

∂q∂qT
= −

N
∑

j=1

1 − f(zj)

f(zj)2
ejcjcj T .

As the Hessian matrix of h is negative semidefi-
nite, the function h is concave. Therefore, from
Proposition 3 it follows that every stationary
point of the log-likelihood function for the noisy
OR model is a global maximum.



The conditional probability of the effect in a
noisy AND model can be written:

Pr(ej+ | c, θθ) =
n
∏

i=1

Pr(h+
i | ci)

=
n
∏

i=1

θcii = exp

(

n
∑

i=1

ln θici

)

.

Let us choose a monotonic transformation qi =
ln θi, i = 1, . . . , n. Then the conditional proba-
bility of the effect in a noisy AND model equals

Pr(ej+ | c,q) = eq
T c.

Let us define zj = qT cj and f(zj) = Pr(e+ |
cj ,q). The function h is the same as for the
noisy OR model in Equation (3). Combined
with f ′(zj) = f(zj), it yields the first derivative
of h

∂h(q)

∂q
=

N
∑

j=1

f ′(zj)(ej − f(zj))

f(zj)(1 − f(zj))
cj

=
N
∑

j=1

ej − f(zj)

1 − f(zj)
cj

and Hessian matrix

∂2h(q)

∂q∂qT
= −

N
∑

j=1

f(zj)

(1 − f(zj))2
(1 − ej)cjcj T .

Hence, the function h is concave, and the log-
likelihood for the noisy AND model has no other
stationary points than the global maxima.

4.2 General Case

The EM algorithm is guaranteed to converge to
the local maxima or saddle points. Thus, we
can only be sure that the global maximum, i.e.
a point θθ∗ such that CLL(θθ∗) ≥ CLL(θθ) for all
θθ∗ 6= θθ, will be found if the log-likelihood has
neither saddle points nor local maxima. How-
ever, the log-likelihood function for a causal in-
dependence model with any symmetric Boolean
function does not always fulfill this requirement
as it is shown in the following counterexample.

Example 1. Let us assume a data set D =
{(1, 1, 1, 1), (1, 0, 1, 0)} and an interaction func-
tion ε1, i.e. γ1 = 1 and γ0 = γ2 = γ3 = 0. To

learn the hidden parameters of the model de-
scribing this interaction we have to maximize
the conditional log-likelihood function

CLL(θθ) = ln[θ1(1 − θ2)(1 − θ3)

+(1 − θ1)θ2(1 − θ3) + (1 − θ1)(1 − θ2)θ3]

+ ln[1 − θ1(1 − θ3) − (1 − θ1)θ3].

Depending on a choice for initial parameter
settings θθ(0), the EM algorithm for symmetric
causal independence models converges to one of
the maxima:

CLL(θθ)max

=

{

0 at θθ = (0, 1, 0),

−1.386 at θθ ∈ {
(

θ1, 0,
1
2

)

,
(

1
2 , 0, θ3

)

}.

Obviously, only the point θθ = (0, 1, 0) is a global
maximum of the log-likelihood function while
the other obtained points are local maxima.

The discussed counterexample proves that in
general case the EM algorithm for symmetric
causal independence models does not necessar-
ily converge to the global maximum.

5 Experimental Results

For our experiments we use Reuters data collec-
tion, which allows us to evaluate the classifica-
tion performance of large symmetric causal in-
dependence models where the number of cause
variables for some document classes is in the
hundreds.

5.1 Evaluation Scheme

Since we do not have an efficient algorithm to
perform a search in the space of symmetric
Boolean functions, we chose to model the in-
teraction among cause and effect variables by
means of Boolean threshold functions, which
seem to be the most probable interaction func-
tions for the given domains.

Given the model parameters θθ, the testing
data Dtest and the classification threshold 1

2 , the
classifications and misclassifications for both
classes are computed. Let tp (true positives)
stand for the number of data samples (cj , ej+) ∈
Dtest for which Pr(e+ | cj , θθ) ≥ 1

2 and fp (false



positives) stand for the number of data samples
(cj , ej+) ∈ Dtest for which Pr(e+ | cj , θθ) < 1

2 .
Likewise, tn (true negatives) is the number of
data samples (cj , ej−) ∈ Dtest for which Pr(e+ |
cj , θθ) < 1

2 and fp (false positives) is the num-
ber of data samples (cj , ej−) ∈ Dtest for which
Pr(e+ | cj , θθ) ≥ 1

2 . To evaluate the classifica-
tion performance we use accuracy, which is a
measure of correctly classified cases,

η =
tp+ tn

tp+ tn+ fn+ fp
,

and F-measure, which combines precision π =
tp

tp+fp and recall ρ = tp
tp+fn ,

F =
2πρ

π + ρ
.

5.2 Reuters Data Set

We used the Reuters-21578 text categorization
collection containing the Reuters new stories
preprocessed by Karčiauskas (2002). The train-
ing set contained 7769 documents and the test-
ing set contained 3018 documents. For every
of the ten document classes the most informa-
tive features were selected using the expected
information gain as a feature selection criteria,
and each document class was classified sepa-
rately against all other classes. We chose to
use the same threshold for the expected infor-
mation gain as in (Vomlel, 2006), the number
of selected features varied from 23 for the corn
document class to 307 for the earn document
class. While learning the values of the hidden
parameters the EM algorithm was stopped af-
ter 50 iterations. The accuracy and F-measure
for causal independence models with the thresh-
old interaction function k = 1, . . . , 4 are given
in tables 1 and 2. Even though the threshold
to select the relevant features was tuned for the
noisy OR classifier, for 5 document classes the
causal independence models with other interac-
tion function than logical OR provided better
results.

The accuracy and F-measure of the noisy OR
model and a few other classifiers on the Reuters
data collection reported in (Vomlel, 2006) show
the competitive performance of the noisy OR
model.

Table 1: Classification accuracy for symmetric
causal independence models with the interac-
tion function τk, k = 1, . . . , 4 for Reuters data
set; NClass is number of documents in the cor-
responding class.

Class NClass τ1 τ2 τ3 τ4

earn 1087 96.3 97.2 97.2 96.8
acq 719 93.1 93.2 93.2 93.0
crude 189 98.1 98.1 97.6 97.7
money-fx 179 95.8 95.8 95.9 96.0

grain 149 99.2 99.0 98.2 97.9
interest 131 96.5 96.8 96.7 96.7
trade 117 96.6 97.0 97.3 97.3

ship 89 98.9 98.8 98.7 98.6
wheat 71 99.5 99.2 98.8 98.5
corn 56 99.7 99.4 99.1 98.8

6 Discussion

In this paper, we discussed the application of
symmetric causal independence models for clas-
sification. We developed the EM algorithm to
learn the parameters in symmetric causal inde-
pendence models and studied its convergence.
The reported experimental results indicate that
it is unnecessary to restrict causal independence
models to only two interaction functions, logical
OR and logical AND. Competitive classification
performance of symmetric causal independence
models present them as a potentially useful ad-
ditional tool to the set of classifiers.

The current study has only examined the
problem of learning conditional probabilities of
hidden variables. The problem of learning an
optimal interaction function has not been ad-
dressed. Efficient search in symmetric Boolean
function space is a possible direction for future
research.
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