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Abstract

In many real problem domains, the main variable of interest behaves monotonically in
terms of the observable variables, in the sense that higher values for the variable of interest
become more likely with higher-ordered observations. Unfortunately, establishing whether
or not a Bayesian network exhibits these monotonicity properties is highly intractable
in general. In this paper, we present a method that, by building upon the concept of
assignment lattice, provides for identifying any violations of the properties of (partial)
monotonicity of the output and for constructing minimal offending contexts. We illustrate
the application of our method with a real Bayesian network in veterinary science.

1 Introduction

In many problem domains, the variables of im-
portance have different roles. Often, a number
of observable input variables and a single out-
put variable are distinguished. In a biomedical
diagnostic application, for example, the input
variables capture the findings from different di-
agnostic tests and the output variable models
the possible diseases. Multiple input variables
and a single output variable in fact are typically
found in any type of diagnostic problem.

For many problems, the relation between the
output variable and the observable input vari-
ables is monotone in the sense that higher-
ordered values for the input variables give rise
to a higher-ordered output for the main vari-
able of interest. In a biomedical diagnostic ap-
plication, for example, observing symptoms and
signs that are more severe will result in a more
severe disease being the most likely value of the
diagnostic variable. The concept of monotonic-
ity in distribution has been introduced to cap-
ture this type of knowledge for Bayesian net-
works (Van der Gaag et al., 2004). More specif-
ically, a network is said to be isotone if the con-
ditional probability distribution computed for
the output variable given specific observations
is stochastically dominated by any such distri-

bution given higher-ordered observations.

Unfortunately, the problem of verifying
whether or not a Bayesian network exhibits the
properties of monotonicity from its domain of
application is highly intractable in general and
remains to be so even for polytrees. Although
an approximate anytime algorithm is available
for deciding if a given network is monotone,
we found that its runtime requirements tend to
forestall use in a practical setting.

In this paper, we present a new, more prac-
ticable method for studying monotonicity of
Bayesian networks. The method builds upon
a lattice of all joint value assignments to the
observable variables under study; this lattice
moreover, is enhanced with information about
the effects of the various assignments on the
probability distribution over the main variable
of interest. The assignment lattice is used for
identifying any violations of the properties of
monotonicity in the network. Subsequently,
minimal offending contexts are constructed that
characterise the identified violations and pro-
vide for further investigation.

The runtime complexity of our method is ex-
ponential in the number of observable variables
under study. For larger networks including a
large number of observable variables therefore,
our method provides for verifying partial mono-



tonicity for limited subsets of variables only.
The unfavourable computational complexity of
the problem, however, is likely to forestall the
design of essentially more efficient methods.

We applied our verification method for study-
ing monotonicity to a Bayesian network in vet-
erinary science. In recent years, we developed a
network for the detection of classical swine fever
in pigs. Both the network’s structure and its
associated probabilities were elicited from two
experts. During the elicitation interviews, the
experts had produced several statements that
suggested properties of monotonicity. We stud-
ied these properties in the network using our
verification method. We found a small num-
ber of violations of the suggested properties of
monotonicity, which proved to be indicative of
modelling inadequacies.

The paper is organised as follows. In Section
2, we review the concept of monotonicity. In
Section 3, we present our method for studying
monotonicity. We report on the application of
our method in Section 4. The paper ends with
our concluding observations in Section 5.

2 The Concept of Monotonicity

Upon reviewing the concept of monotonicity, we
assume that a Bayesian network under study
includes a single output variable C' and n ob-
servable variables F;, 1,...,n, n > 1;
in addition, the network may include an arbi-
trary number of intermediate variables which
are not observed in practice. Each variable
X; in the network adopts one of a finite set
QX;) = {z},..., 2™}, m > 1, of values. We
assume that there exists a total ordering < on
this set of values; without loss of generality, we
assume that z] < xf whenever j < k. The or-
derings per variable are taken to induce a partial
ordering < on the set of joint value assignments
to any subset of the network’s variables.

The concept of monotonicity in distribution
now builds upon the posterior probability distri-
butions over the output variable given the vari-
ous joint value assignments to the network’s ob-
servable variables (Van der Gaag et al., 2004).
The concept, more specifically, is defined in

terms of stochastic dominance among these dis-
tributions. For a probability distribution Pr(C)
over the output variable, the cumulative dis-
tribution function Fp, is defined as Fp.(c!) =
Pr(C < ¢) for all values ¢! of C. For two
distributions Pr(C) and Pr'(C) over C, associ-
ated with Fp;(C) and Fp.(C) respectively, we
say that Pr'(C) is stochastically dominant over
Pr(C), denoted Pr(C) < PY/(C), if Fpy(c') <
Fp,(c!) for all ¢¢ € Q(C) (Berger, 1980). We
now say that the network is isotone in its set of
observable variables F if

e=<e — Pr(C|e) <Pr(C|¢)

for all joint value assignments e, e’ to E. Infor-
mally speaking, we have that a network is iso-
tone in distribution if entering a higher-ordered
value assignment to the observable variables
cannot make higher-ordered values of the out-
put variable less likely. The concept of anti-
tonicity has the reverse interpretation: the net-
work is said to be antitone in E if

e=<e — Pr(C|e) >Pr(C|¢)

for all value assignments e, ¢’ to E. Note that if
a network is isotone in its observable variables
given the orderings < on their sets of values,
then the network is antitone given the reversed
orderings. Although antitonicity thus is (re-
versely) equivalent to isotonicity, we explicitly
distinguish between the two types of monotonic-
ity since a domain of application may exhibit
an intricate combination of isotonicity and an-
titonicity for interrelated observable variables.

Building upon the above definitions, we have
that deciding whether or not a Bayesian net-
work is isotone amounts to verifying that enter-
ing any higher-ordered value assignment to its
observable variables results in a stochastically
dominant probability distribution over the out-
put variable. Establishing antitonicity amounts
to verifying that entering any such assignment
results in a dominated distribution.

The problem of deciding monotonicity for
a Bayesian network is known to be coNPFF-
complete in general, and in fact remains coNP-
complete for polytrees (Van der Gaag et al.,



2004). In view of these complexity considera-
tions, Van der Gaag et al. designed an approx-
imate anytime algorithm for verifying whether
or not a given network is monotone. This al-
gorithm studies the relation between the out-
put variable and each observable variable sep-
arately, in terms of the sign of the qualitative
influence between them (Wellman, 1990); upon
inconclusive results, iteratively tightened nu-
merical bounds are established on the relevant
probabilities using an anytime method available
from Liu and Wellman (1998). Unfortunately,
the overall runtime requirements of the algo-
rithm tend to forestall use in a practical setting.

3 Studying Monotonicity

Our method for studying monotonicity in
Bayesian networks now builds upon the con-
struct of an assignment lattice. The lattice in-
cludes all joint value assignments to the set of
observable variables and is enhanced with prob-
abilistic information computed from the net-
work under study. From the lattice, all viola-
tions of the properties of monotonicity are iden-
tified, from which minimal offending contexts
are constructed for further investigation.

3.1 The assignment lattice

The assignment lattice for the set F of observ-
able variables of a Bayesian network captures
all joint value assignments to F, along with the
partial ordering between them. For each value
assignment e to F, an element L(e) is included
in the lattice. The bottom of the lattice en-
codes the assignment e for which we have that
e X ¢ for all ¢ € Q(F); the bottom thus en-
codes the lowest-ordered value assignment to F.
The top of the lattice encodes the assignment e”
for which we have that ¢’ < e” for all ¢’ € Q(E);
the top thus encodes the highest-ordered value
assignment to F. In the lattice, we further have
that an element L(e) precedes an element L(e')
if e < €”; we moreover say that L(e) precedes
L(e") directly if there is no assignment e’ with
e < €' < ¢”. The partial ordering defined by the
lattice thus coincides with the partial ordering
=< on the joint value assignments to E. Figure
1 depicts, as an example, the assignment lattice
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Figure 1: An example assignment lattice for two
ternary observable variables.

for the two ternary variables X and Y. For fur-
ther information about lattices in general, we
refer to (Gratzer, 1971).

To describe the effects of the various value
assignments e on the probability distribution
over the output variable, the assignment lat-
tice is enhanced with probabilistic information.
With each element L(e) of the lattice, the con-
ditional probability distribution Pr(C' | e) over
the output variable C is associated. We note
that these distributions are readily computed
from the Bayesian network under study. We
will return to the complexity of the computa-
tions involved in Section 3.4.

3.2 Exploiting the assignment lattice

By building upon the assignment lattice, veri-
fying monotonicity in distribution amounts to
checking whether particular dominance proper-
ties hold among the probability distributions as-
sociated with the lattice’s elements.

We recall that a Bayesian network is isotone
in its set of observable variables FE if entering
a higher-ordered value assignment to E results
in a stochastically dominant probability distri-
bution over the output variable C. We further
recall that the partial ordering < on the joint
value assignments to E is encoded directly in
the assignment lattice for £. We now consider
all pairs of conditional probability distributions
Pr(C | e) and Pr(C | €') associated with ele-
ments L(e) and L(e') in the lattice such that
L(e) precedes L(e'). If for each such pair we
have that Pr(C | e) < Pr(C | €'), then the net-



work is isotone in E. The network is antitone in
E if for each such pair of distributions we have
that Pr(C | ¢') < Pr(C | €). We note that, since
the property of stochastic dominance is transi-
tive, we have to study the dominance proper-
ties of the distributions of directly linked pairs
of elements in the lattice only to decide upon
isotonicity or antitonicity.

As mentioned in Section 2, a domain of ap-
plication may exhibit an intricate combination
of properties of isotonicity and antitonicity for
interrelated observable variables. As an exam-
ple, we consider the two variables X and Y such
that the output variable of interest behaves iso-
tonically in X and antitonically in Y. We focus
on the value assignments

e;; = ziyitl
! — i+1,,7
Wz 1y' 1
[/ — i+1, 5+
€j = T Y

to these variables. Note that for the three as-
signments we have that e;; < e;; and e}; < efl;;
the assignments e;; and e{; have no ordering.
For studying the monotonicity properties in-
volved, we now have to compare the probability
distributions over the output variable C' that
are computed from the Bayesian network under
study, given the various assignments to X and
Y. If for the pair of distributions Pr(C | e;;)
and Pr(C | ej;), we have that Pr(C | ¢;) is
stochastically dominant over Pr(C' | e;;), then
the network exhibits the associated property of
isotonicity in X. If for the distributions given
e;; and ej; we have that Pr(C | e;) is stochas-
tically dominant over Pr(C | ¢;;), then the net-
work shows the associated property of antitonic-
ity in Y. The network thus reveals both prop-

erties if
Pr(C | eij) < Pr(C | &) < Pr(C | ¢;)

Verifying whether or not the network is isotone
in X and antitone in Y now amounts to study-
ing the above inequalities for all values z* and
yJ of the two variables.

3.3 Deriving offending contexts

Upon using the assignment lattice as described
above, some properties of monotonicity may

not show in the Bayesian network under study.
We then say that these properties are violated.
More formally, we say that a pair of joint value
assignments e, e/ with e < €' violates the prop-
erty of isotonicity if we have Pr(C | e) > Pr(C |
e') for their associated probability distributions;
violation of the property of antitonicity is de-
fined similarly. We observe that for any violat-
ing pair e, ¢’ whose elements are directly linked
in the assignment lattice, there is a unique vari-
able E; in the set of observable variables E to
which e and €' assign a different value. Let €]
be the value of this variable within the assign-
ment e and let eé“, k # j, be its value in €'. The
violation now is denoted by (e, e’ | Ef ~FY. We
say that the violation has a change of the value
of E; from €] to ef for its origin, written E} =k,
The value assignment e~ to E \ {E;} that is
shared by e and ¢, is called the context of the
violation.

In general, using the assignment lattice for a
Bayesian network may result in a set V of vio-
lations of the properties of monotonicity. Some
of the identified violations may show consider-
able regularity, in the sense that if a violation
originates from a change of value in a particular
context, then this same change causes a viola-
tion in all higher-ordered contexts as well. Such
violations will be termed structural. Other vio-
lations from the set V do not have such a regular
structure and may be considered incidental. We
distinguish between the two types of violation
to allow a compact representation of the entire
set of identified violations.

We consider the subset V(EZ] ~ky C Vofall vi-
olations of the properties of monotonicity that
originate from a change of the value of the vari-
able E; from ef to ef. The context e~ of such
a violation now is called a structural context
of offence if we have that there is a violation
(e € | Ef_)k) € V(Eg_ﬂc) for all value assign-
ments e to E that include this context e~ or a
higher-ordered one. If there is no lower-ordered
structural context of offence for the same change
of value F} _ﬂc, we say that the context of offence
is structurally minimal. A structurally minimal
context of offence thus characterises a set of re-



lated violations. A structurally minimal con-
text e~ for the violations originating from E? —k
more specifically defines a sublattice of the as-
signment lattice in which each element includes
eg and in which for each element e there exists a
violation (e, €’ | Ezj_”c) in the set V(Ezj_)k); the
context e~ is the bottom of this sublattice.

In addition to the violations that are covered
by structurally minimal contexts of offence, the
set of all identified violations may include ele-
ments that are not structurally related. A con-
text e~ is said to be an incidental context of
offence if it is not a structural context of of-
fence. We note that any set of violations iden-
tified from a Bayesian network is now charac-
terised by a set of structurally minimal contexts
of offence and a set of incidental contexts.

As an example, we consider the lattice from
Figure 1 for the two ternary observable vari-
ables X and Y. Suppose that upon verify-
ing isotonicity of the Bayesian network un-
der study, the three violations (z'y? z%y? |
X122) (193,223 | X'72) and (222, 2%y |
X?273) are identified. The first two of these
violations have the same origin: the two vio-
lations arise if the value of the variable X is
changed from z' to z?. These violations are
characterised by the structurally minimal con-
text of offence y?: in both the context y? and the
higher-ordered context 3, changing the value of
X from z' to z? gives rise to a violation. The
third violation mentioned above is not yet cov-
ered by the identified minimal context since it
has a different origin. This violation originates
from a change of the value of the variable X
from z2 to 23 and again has 32 for its offending
context. The context y? now is merely inciden-
tal since no violation has been identified for the
pair of assignments z%y3 and z3y> with include
the higher-ordered context 73.

To conclude, we would like to note that for a
given set of violations, the structurally minimal
contexts of offence are readily established by
traversing the assignment lattice under study.
Starting at the bottom of the lattice, the pro-
cedure finds an element L(e) such that e is the
lowest-ordered joint value assignment occurring

in a violation (e, e’ | Ez] k) € V. The procedure
subsequently isolates from the assignment lat-
tice the sublattice with the element L(e), with
e= eg e, for its bottom; the sublattice further
includes all elements L(e]et) with efe™ < elet.
Now, if each element of the sublattice occurs in
a violation with E/ ~k for its origin, then the
context e~ is a structurally minimal context of
offence; otherwise it is incidental. The proce-
dure is iteratively repeated for all yet uncovered
violations.

3.4 Complexity considerations

The runtime complexity of our method for
studying monotonicity of a Bayesian network is
determined by the size of the assignment lattice
used. We observe that this lattice encodes an
exponential number of value assignments to the
set of observable variables. Constructing the
lattice and computing the probability distribu-
tions to be associated with its elements, there-
fore, takes exponential time. Moreover, the
dominance properties of an exponential number
of pairs of probability distributions have to be
compared. For n binary observable variables,
for example, already

n

Z(Z‘) S(n—i) > 2"

i=0

comparisons are required. From these consid-
erations we have that our method has a very
high runtime complexity. Although its require-
ments can be reduced to at least some extent
by exploiting the independences modelled in a
Bayesian network, for larger networks including
a large number of observable variables study-
ing monotonicity inevitably becomes infeasible.
The unfavourable computational complexity of
the problem, however, is likely to forestall the
design of essentially more efficient methods.

In view of the high runtime complexity in-
volved, we propose to use our method for study-
ing properties of partial monotonicity only. The
concept of partial monotonicity applies to a sub-
set X of the observable variables of a network.
An assignment lattice is constructed for these
variables as described above. The probabil-
ity distributions associated with the elements



of the lattice are conditioned on a fized joint
value assignment e~ to the observable variables
E~ = FE\ X that are not included in the study.
With each element L(z) of the lattice thus is
associated the conditional probability distribu-
tion Pr(C | ze~). The lattice now provides for
studying the monotonicity properties of the net-
work for the set X given e~. The assignment
e~ then is termed the background assignment
for studying the partial monotonicity.

We would like to note that partial mono-
tonicity of a network given a particular back-
ground assignment e~ does not guarantee par-
tial monotonicity given any other background
assignment. Also, violations of the properties of
monotonicity that are identified given a particu-
lar background assignment may not occur given
another such assignment. The background as-
signment against which partial monotonicity is
to be studied should therefore be chosen with
care and be based upon considerations from the
domain of application.

4 An Example Application

We applied our method for studying monotonic-
ity to a real Bayesian network in veterinary sci-
ence. We briefly introduce the network and de-
scribe the violations that we identified.

4.1 A network for classical swine fever

In close collaboration with two experts from
the Central Institute of Animal Disease Con-
trol in the Netherlands, we are developing a
Bayesian network for the detection of classical
swine fever. Classical swine fever is an infec-
tious disease of pigs, which has serious socio-
economical consequences upon an outbreak. As
the disease has a potential for rapid spread, it is
imperative that its occurrence is detected in the
early stages. The network under construction is
aimed at supporting veterinary practitioners in
the diagnosis of the disease when visiting pig
farms with disease problems of unknown cause.
Our network currently includes 42 variables for
which over 2400 parameter probabilities have
been assessed. The variables model the patho-
genesis of the disease as well as the clinical signs
observed in individual pigs. 24 of the total of

42 variables are observable. Figure 2 depicts the
graphical structure of the current network.

4.2 Constructing the lattice

During the elicitation interviews, our veterinary
experts produced various statements that sug-
gested monotonicity. They indicated, for ex-
ample, that the output variable CSF Viraemia
should behave isotonically in terms of the five
variables Diarrhoea, Ataxia, Fever, Malaise, and
Skin haemorrhages. We focus on these observ-
able variables to illustrate the application of our
method for studying partial monotonicity.

From the five observable variables under
study, we constructed an assignment lattice as
described in the previous section. Since all
variables involved were binary, adopting one of
the values true and false, we used a slightly
more concise encoding of their joint value as-
signments. For each assignment e to the set of
observable variables E, we let L(e) be the subset
of E such that E; € L(e) if and only if E; = true
occurs in e. The elements of the resulting lat-
tice thus are subsets of F; the bottom of the
lattice is the empty set and the top equals the
entire set E. The resulting lattice for the five
variables under study is shown in Figure 3. It
includes 2° = 32 elements to capture all possible
joint value assignments to the variables and fur-
ther includes 80 direct set-inclusion statements.

Before the lattice could be enhanced with
conditional probabilities of the presence of a vi-
raemia, of classical swine fever, we had to decide
upon a background assignment for the other 19
observable variables against which the proper-
ties of partial monotonicity would be verified.
We decided to take for this purpose the value
assignment in which all other observable vari-
ables of the network had adopted the value false.
We chose this particular assignment since the
various clinical signs have a rather small prob-
ability of occurrence and it is highly unlikely
to find a large number of these signs in a sin-
gle live pig. Given this background assignment,
we computed the various conditional probabil-
ities to be associated with the elements of the
assignment lattice.

For each pair of directly linked elements from
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Figure 2: The graphical structure of our Bayesian network for classical swine fever in pigs.

the assignment lattice, we compared the con-
ditional probabilities of a viraemia of classical
swine fever. We found four violations of the
properties of partial isotonicity given the se-
lected background assignment; these violations
are shown by dashed lines in Figure 3. The four
violations all originated from adding the clinical
sign of diarrhoea to the combination of findings
of ataxia and malaise. The four violations thus
were all covered by a single structurally minimal
context of offence.

We presented the pairs of violating assign-
ments to two veterinarians. Being confronted
with the four violations, they independently and
with conviction indicated that the probability
of a viraemia of classical swine fever should in-
crease upon finding the additional sign of diar-
rhoea. Both veterinarians mentioned that the
combination of ataxia and diarrhoea especially
pointed to classical swine fever; within the scope
of the Bayesian network, they could not think
of another disease that would be more likely

to give rise to this combination of signs. They
thus indicated that the network should indeed
have been isotone in the five variables under
study given the absence of any other signs. The
four identified violations thus were indicative of
modelling inadequacies in our current network.

5 Conclusions

In this paper, we have presented a method for
studying monotonicity of Bayesian networks. In
view of the unfavourable complexity of the prob-
lem in general, the method focuses on just a
subset of the observable variables of a network
and builds upon a lattice of all joint value as-
signments to these variables. The lattice is en-
hanced with information about the effects of
these assignments on the probability distribu-
tion over the network’s main output variable.
The enhanced lattice then is used for identifying
all violations of the properties of monotonicity
and for constructing minimal offending contexts
for further consideration.
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Figure 3: An assignment lattice for our Bayesian network for classical swine fever; the violations
of the properties of partial monotonicity are indicated by dashed lines.

We would like to note that, as a supplement
to our method for studying monotonicity, we
designed a special-purpose elicitation technique
that allows for discussing with domain experts
whether or not the identified violations indeed
can be construed as violations of commonly ac-
knowledged patterns of monotonicity (Van der
Gaag et al., 2006). This technique has been
designed specifically so as to ask little time and
little cognitive effort from the experts in the ver-
ification of the identified violations.

The results that we obtained from applying
our method for studying monotonicity to a real
network in veterinary science, indicate that it
presents a useful method for studying reasoning
patterns in Bayesian networks. The next step
now is to extend our method by techniques that
exploit the constructed minimal offending con-
texts for identifying the modelling inadequacies
in a network that cause the various violations
of monotonicity.
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