
Stochastic Robust
(Anisotropy-based) Control Theory:

Past, Present, and Future

Alexander Kurdyukov

Head of Laboratory "Dynamics of Control Systems"
Trapeznikov Institute of Control Sciences, RAS



AGENDA

• Introduction
1. Anisotropy-based theory location in Control Theory
2. Class of control systems anisotropy theory was done

for
3. Some Pioneers
4. Pre-conditions of Anisotropy-based theory.

LQG and H∞ optimization. Difference and commonality



• Past (1993-2005)
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1. Suboptimal problem for descriptor system
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VERY DIFFICULT PROBLEM

How to extend anisotropic theory
for continue - time systems.



Introduction



Anisotropy-based theory location in Control Theory

Control(C)×Communication(C)×Computing(C) = C3

Problems are from control,

performance cost is from information theory



Class of control systems anisotropy theory was done for.
Mathematical models for investigation





xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk

yk = C2xk + D21wk

, −∞ < k < +∞ , (1)

where A, Ci, Bj и Dij are appropriative dimension constant matrixes. System
F (z), and its subsystems F (z)ij have following state space realizations:

F ∼




A B1 B2

C1 D11 D12

C2 D21 0


 , (2)

Fij ∼

 A Bj

Ci Dij


 , 1 ≤ i, j ≤ 2 (3)



Some pioneers.

• Saridis (1988), IEEE Tr. AC

• Semenov, Vladimirov, Kurdyukov (1994), CDC-33

• Karny (1996), Automatica

• Petersen, James, Dupuis (2000), IEEE Tr. AC



Pre-conditions of Anisotropy-based theory.
LQG and H∞ optimization. Difference and commonality.
Common paradigm for LQG/H2 and H∞ control problems

F

K

W

U

Z

Y

Рис. 1: Common paradigm for H2/LQG and H∞ control problems

F is the plant, K is a controller, W и Z are input and output appropriately, Y
and U are observing output and control. TZW is close loop transfer function
(transfer function matrix) from W to Z. In both problems: Find control,
which minimizes appropriative performance functional.



Standard H2 optimization problem

Standard H2 optimization problem: Find the controller K, which

• stabilizes close loop system

• minimizes H2 norm of close loop transfer function matrix TZW from W

to Z:
‖TZW ‖2 → min (4)

Definition:

‖H‖2 =

(
Tr

∫ π

−π

Ĥ(ω)(Ĥ(ω))∗dω

)1/2

, (5)

where
Ĥ(ω) ≡ lim

r→1−0
H

(
r eiω

)
, ω ∈ Ω ≡ [−π; π] ,

is the angular boundary value of the generating filter H.



Standard H∞ optimization problem

Standard H∞ optimization problem: Find the controller K,

• stabilizes close loop system

• minimizes H∞ norm of close loop transfer function matrix TZW from
W to Z:

‖TZW ‖∞ → min (6)

Suboptimal H∞ control problem:

‖TZW ‖∞ ≤ γ, (7)

где γ ≥ γopt, γopt ≥ ‖TZW ‖∞.

For transfer function matrix H(z) the define

‖H‖∞ ≡ sup
|z|<1

σ(H(z)) = ess sup
ω∈Ω

σ
(
Ĥ(ω)

)
, (8)

where σ(·) is maximal singular value of matrix.



Similarity and difference H∞ and H2 control problems

Similarity. The solving of both problems are based on solutions of Riccati
equations, in H∞ suboptimal control problem Riccati equation has some
parameter γ. If γ → ∞ the Riccati equations for H∞ suboptimal control
problem tend to Riccati equations for LQG control problem.

Difference. Frequency interpretation for H∞ and H2 optimal problem
for SISO systems : H∞ controllers are designed to minimize maximum of
amplitude-frequency characteristic of closed-loop system, H2 control minimizes
the average amplitude over all frequencies.

Input signal assumptions: Input disturbance W is to be gaussian white
noise in LQG problem. Input disturbance W is quadratic integrable in H∞
problem.



Singularity of H∞ and H2 controllers functioning if
input signal assumptions are not true.

The close loop system does not work good with H2 controller in disturbance
attenuation problem if the input signal is «far from» white noise.

The close loop system with H∞ controller is very conservative (the great
amount of control needed) if the input signal is « closed enough» to gaussian
white noise.



Convergence (trade-off)between H∞ and H2 theories
Capability of common (joint) theory construction

• Optimal ( suboptimal) H∞ controllers are not unique. It means we can
propose once more performance criterion .

• Natural choice for the new performance criterion is H2 norm of close
loop transfer function matrix.

1. Minimization of close loop
system H2 norm with constraints
on H∞ norm.
Bernstein D.A., Haddad W.M.
LQG Control with an H∞
Performance Bound: A Riccati
Equation Approach. //IEEE
Transactions on Automatic
Control, AC-34, N 3, 1989.

2. Minimization of close loop
system H∞ norm with upper bound
H2 norm minimization.
Mustafa D., Glover K. Minimum
Entropy H∞-Control. Lecture
Notes in Control and Information
Sciences, Springer-Verlag, Berlin
etc., 1991.



H∞ optimization problem with minimization of H∞ entropy

On the set of H∞ suboptimal controllers to find controller which minimizes
H∞ entropy functional

J(γ, F ) = − γ2

2π

∞∫

−∞

ln | det
(
Im − γ−2 (F (jω))∗ F (jω)

) |dω,

γ is the number that bounds close loop transfer function H∞ norm for stable
close loop system F (s).

The minimization of H∞ entropy of the system F (s) is equivalent of the
minimization of upper bound of H2 norm of F (s).

• Designed controller is unique .

• H∞ control problem with H∞ entropy minimization is equivalent to risk
sensitivity problem.



Past of the theory. Vladimirov’s ideas
• Semyonov, A.V., I.G.Vladimirov, and A.P.Kurdjukov (1994) “Stochastic

approach to H∞-optimization”. Proceedings of the 33rd Conference on
Decision and Control, Florida, USA, December 14–16, Vol. 3, pp. 2249–
2250.

• Vladimirov, I.G., A.P.Kurdjukov, and A.V.Semyonov (1995) “Anisotropy
of signals and entropy of linear time invariant systems”. Doklady Akademii
Nauk, Vol. 342, no. 3, pp. 583–585. (in Russian).

• Vladimirov, I.G., A.P. Kurdjukov, and A.V. Semyonov (1995). "Strochastic
problem of H∞-optimization."Doklady Akademii Nauk, Vol.343, No.5,
607–609. (in Russian)

• Vladimirov, I.G., A.P.Kurdjukov, and A.V.Semyonov (1996) “On computing
the anisotropic norm of linear discrete-time-invariant systems”. Proceedings
of the 13th IFAC World Congress, San-Francisco, California, USA, June
30–July 5, Vol. G, pp. 179–184, Paper IFAC-2d-01.6.



• Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. State-space solution
to anisotropy-based stochastic H-infinity optimization problem. Proceedings
of the 13th IFAC World Congress, San-Francisco, California, USA, June
30-July 5, 1996, v. H, Paper IFAC-3d-01.6, 1996.

• Diamond, P., I.G.Vladimirov, A.P.Kurdyukov, and A.V.Semyonov (2001)
“Anisotropy-based performance analysis of linear discrete time invariant
control systems”. Int. J. Control, Vol. 74, no. 1, pp. 28–42.

• Kurdyukov A.P., Maximov E.A. Robust stability of linear discrete time-
invariant systems with anisotropic norm bounded uncertainty. Automation
and Remote Control, No.12, 2004, pp.129-144 (in Russian)

• Vladimirov, I.G., A.P.Kurdyukov, E.A.Maksimov and V.N.Timin (2005)
“Anisotropy-based control theory — a new approach to stochastic robust
control”. Plenary addresses of IV conference “System Identification and
Control Problems”, Moscow, Russia, January 25-28, pp. 9–32.



Fundamentals of the theory: anisotropy of the signal,
mean anisotropy of the sequence, physical interpretation

How to calculate



Definition 1 The relative entropy (Kullback-Leibler distance) D(f ‖ g)

between two densities f(x) and g(x) is defined by

D(f ‖ g) =

∫
f(x) log

f(x)

g(x)
dx. (9)

D(f ‖ g) is finite, if support set of f(x) is contained in the the support set

of g(x) . It is true that 0 log
0

0
= 0.

D(f ‖ g) ≥ 0

with equality iff f = g almost everywhere.

Definition 2 Let X and Y are two random variable with joint distribution
function of probability density f(x, y) and probability density functions f(x)

f(y) appropriately . The mutual information I(X; Y ) is defined as

I(X; Y ) =

∫
log f(x, y)

f(x, y)

f(x)f(y)
dxdy. (10)



Definition of anisotropy of the random vector

Denote by Lm
2 the class Rm-dimension absolutely continuously distributed

random vectors W with values in Rm satisfying E |W |2 < ∞ .

For any λ > 0 denote as pm,λ the probability density function (pdf) on Rm

of gaussian signal with zero mean and scalar covariance matrix λIm

pm,λ(w) = (2πλ)−m/2 exp

(
−|w|

2

2λ

)
, w ∈ Rm. (11)

For any W ∈ Lm
2 with pdf f : Rm → R+ the relative entropy of W ∈ Lm

2

according to (11) has the following view

D (f‖pm,λ) = E ln
f(W )

pm,λ(W )
= −h(W ) +

m

2
ln(2πλ) +

E|W |2
2λ

, (12)

where
h(W ) = −E ln f(W ) = −

∫

Rm

f(w) ln f(w)dw (13)

is differential entropy of random vector W



Definition of anisotropy of the random vector (continuation)

Definition 3 The anisotropy A(W ) of random vector W ∈ Lm
2 is defined

as minimal relative entropy of its pdf from gaussian distribution Rm with
zero mean and scalar covariance matrix

A(W ) = min
λ>0

D (f‖pm,λ) . (14)

Direct calculation shows, that minimum in (12) over λ > 0 is obtained if
λ = E|W |2/m , so

A(W ) = min
λ>0

D (f‖pm,λ) =
m

2
ln

(
2πe

m
E|W |2

)
− h(W ). (15)



Properties of random vector anisotropy

Denote by Gm(Σ) the class of Rm-valued gaussian disturbances random
vectors W with EW = 0 and nonsingular covariance matrix cov(W ) = Σ,
so that the corresponding pdf is

p(w) = (2π)−m/2(det Σ)−1/2 exp

(
−1

2
‖w‖2Σ−1

)
,

‖x‖Q =
√

x>Qx denotes the norm of a vector x, induced by a positive
definite symmetric matrix Q > 0.

Lemma 1

(a) For any positive definite matrix Σ ∈ Rm×m,

min
W

{
A(W ) : W ∈ Lm

2 , E(WW>) = Σ
}

= −1

2
ln det

mΣ

TraceΣ
, (16)

and the minimum is attained only for W ∈ Gm(Σ);

(b) For any W ∈ Lm
2 , A(W ) ≥ 0. Moreover A(W ) = 0 iff W ∈ Gm(λIm)



Mean anisotropy of random sequences

Let W ∈ Lm
2 be partitioned into subvectors w1, . . . , wr of dimentions m1, . . . , mr,

e.g. m1 + . . . + mr = m

W =




w1

...

wr


 . (17)

For any 1 ≤ s ≤ t ≤ r, denote by Ws:t = (wk)s≤k≤t the (ms + . . . + mt)-
dimensional subvector of W (17), obtained by "stacking"ws, . . . , wt.

Definition 4 The mean anisotropy of sequence W is defined as:

A(W ) = lim
N→+∞

A(W0:N−1)

N
. (18)



Mean anisotropy of gaussian random sequences

Let V ≡ (vk)−∞<k<+∞ ∈ Gm(I), W ≡ (wk)−∞<k<+∞ ≡ GV ,

G¾ ¾
W V

Рис. 2:

The generating filter G ∈ Hm×m
2 is identified with its transfer function

G(z) ≡
+∞∑

k=0

gk zk , where gk ∈ Rm×m , k ≥ 0 is input-impulse response.

Theorem 1 The mean anisotropy (18) can be representable as

A(W ) = − 1

4π

π∫

−π

ln det

(
m

‖G‖22
Ĝ(ω)

(
Ĝ(ω)

)∗)
dω . (19)



Properties of gaussian sequence mean anisotropy

• A(W ) > 0 if rank Ĝ(ω) = m for almost all ω ∈ [−π, π),

• A(W ) = +∞ if Ĝ - not maximum rank,

• A(W ) = 0 if there is such number α > 0 что
Ĝ(ω)Ĝ∗(ω) = αIm, −π ≤ ω < π .



Calculation of mean anisotropy in state space

Let state space representation of generating filter G ∈ Hm×m
2 be





xk+1 = Axk + Bvk

wk = Cxk + Dvk

, −∞ < k < +∞, (20)

where A, B, C, D are matrices of appropriative dimension. The matrix ρ(A) <

1 is assumed to be asymptotically stable (with spectral radius ρ(a) < 1) and
D nonsingular.

Associate with the filter G the Riccati equation in the matrix R ∈ Rn×n

R = ARA> + BB> − ΛΘΛ>, (21)

Λ
.
= (ARC> + BD>)Θ−1, (22)

Θ
.
= CRC> + DD>. (23)

A solution R of equation (21)–(23) is said to be admissible if R is symmetric
and positive semidefinite and matrix A− ΛC is asymptotically stable.



Calculation of mean anisotropy in state space

The equation (21)–(23) can be written in a form

ARA> −R− (ARC> + BD>)

× (CRC> + DD>)−1(CRA> + DB>) + BB> = 0. (24)

Theorem 2 Let a generating filter G ∈ Hm×m
2 have state-space realization

(20) with A asymptotically stable and D nonsingular. Then the mean anisotropy
(19) of the sequence W = GV is

A(G) = −1

2
ln det

(
m Θ

Trace (CPC> + DD>)

)
, (25)

where Θ = CRC> + DD>, R is admissible Riccati equation (21)–(23), and
P is controllability gramian of the filter satisfying Lyapunov equation

P = APA> + BB>. (26)



Algorithm for mean anisotropy calculation

• The Riccati equation (21)–(23) or (24):

ARA> −R− (ARC> + BD>)

× (CRC> + DD>)−1(CRA> + DB>) + BB> = 0.

is solved , and R and Θ = CRC> + DD> is found

• Lyapunov equation
P = APA> + BB>.

is solved.

• The mean anisotropy is calculated by formula

A(G) = −1

2
ln det

(
m Θ

Trace (CPC> + DD>)

)
.



Anisotropic norm: properties, how to calculate.
Asymptotic of anisotropic norm.



Anisotropic norm of linear time invariant systems

Let F (z) ∈ Hp×m
∞ be linear time invariant system and Z = FW , e.g. F (z) is

analitic in open unit ball and has finite H∞ norm ‖F‖∞ = sup
|z|<1

σ(F (z)) =

ess sup
−π≤ω≤π

σ(F̂ (ω)), where σ( · ) is maximum singular value of F (z).

Definition 5 For given a ≥ 0, a-anisotropic norm of the system F is defined
as

|||F |||a = sup
G
{‖FG‖2/‖G‖2 : G ∈ Ga} , (27)

Ga =
{
G ∈ Hm×m

2 : A(G) ≤ a
}

(28)

V¾G ∈ Ga
¾F¾Z

W

Рис. 3:



Properties of anisotropic norm for linear system

For any fixed system F ∈ Hp×m
∞ , its a-anisotropic norm (52) is nondecreasing

continuous function of a ≥ 0 satisfying

1√
m
‖F‖2 = |||F |||0 ≤ |||F |||a ≤ lim

a→+∞
|||F |||a = ‖F‖∞. (29)

By (29), computing the norm |||F |||a is only of interest if a > 0 and

‖F‖2 <
√

m ‖F‖∞ (30)

(there is a particular interest if ‖F‖∞ À ‖F‖2/
√

m). This equality is not
true iff, F is an inner (inner system) up to a nonzero constant multiplier
λ > 0 such that (F̂ (ω))∗F̂ (ω) = λIm for almost all ω ∈ [−π, π). For nonzero
system F ∈ Hp×m

∞ , the inequality p < m implies (30).



Anisotropic norm of linear system

||F||inf

K||F||
2

|||F|||
a

a

Рис. 4: Changes of anisotropic norm

K =
1√
m



Asymptotic behavior of a - anisotropic norm

|||F |||a −
‖F‖2√

m
∼

√
‖F‖44/m− (‖F‖22/m)

2

‖F‖2
√

a if a → 0+, (31)

‖F‖∞ − |||F |||a ∼ 1

2
‖F‖∞ exp

(
− 2

m
(J(‖F‖∞) + a)

)
if a → +∞,(32)

For any positive integer k, the norm of the system F ∈ Hp×m
∞ in Hardy

space Hp×m
2k is defined as

‖F‖2k =


 1

2π

π∫

−π

Trace
(
(F̂ (ω))∗F̂ (ω)

)k

dω




1/(2k)

(particularly, for k = 1, it gives H2-norm).

J(γ, F ) = − γ2

2π

∞∫

−∞

ln | det
(
Im − γ−2 (F (jω))∗ F (jω)

) |dω,



Calculation of ‖F‖4 norm in state space
Vladimirov’s result

Let system F has the following state-space presentation

F =


 A B

C D




Lemma 2 H4-norm of asymptotical stable system F is given as

‖F‖44 = Trace (CPC>+DD>)2+2Trace
(
(CPA> + DB>)Q(APC> + BD>)

)
,

(33)
where P and Q are gramian of controllability and observability of system F .
P and Q can be found as solutions of Lyapunov’s equations.

P = APA> + BB>, Q = A>QA + C>C.



Pseudo multiplicative property of anisotropic norm

The ring property of H∞-norm , (sub multiplicative property)

‖FG‖∞ ≤ ‖F‖∞‖G‖∞
is not true for anisotropic norm ||| · |||a.
But there is the analog of ring property.

Theorem 3 For any a ≥ 0 and any systems F ∈ Hp×m
∞ и G ∈ Hm×m

∞ ,

|||FG|||a ≤ |||F |||b |||G|||a (34)

где
b = a + A(G) + m ln

(√
m |||G|||a/‖G‖2

)
. (35)

Corollary 1 ANISOTROPIC-BASED SMALL GAIN THEOREM



Robust stability in anisotropic theory

Let P be the object with follow description

 z1

z2


 =


 P11 P12

P21 P22





 w1

w2


 . (36)

p

¾

∆

q

-

P¾z ¾ w

Рис. 5: P–∆ конфигурация.



Theorem 4 Consider Fu(P, ∆), where ∆ : l2 → l2 and P : l2 → l2 are
causal linear systems.

• Let P be stable and

|||P11|||c < ε−1,where c = a + m ln
ε

ess inf
−π≤ω≤π

σ(∆(jω))
, (37)

σ(∆) =
√

λmin(∆∗∆) – minimum singular value of ∆, ε > 0.

• Let

a = −1

2
ln det

mΣ

trΣ
−m ln

ε

ess sup σ(∆(jω))
,

where Σ = (Im − qP ∗11P11)
−1, and parameter q ∈ [0, ‖P11‖−2

∞ ) satisfies
inequality

tr
[(

Im − ε2P ∗11P11

)
(Im − qP ∗11P11)

−1
]
≤ 0. (38)

Then for all ∆ ∈ Da(ε) close-loop system Fu(P, ∆) is internal stable.



How to calculate the anisotropic norm in state space

Let system F has the following state space representation

F =


 A B

C D




It is well known fact for calculation of ‖F‖2 norm of the system F it is
necessary to solve Lyapunov equation.

It is well known fact for calculation of ‖F‖∞ norm of the system F it is
necessary to solve Riccati equation (Bounded real lemma).

As far as anisotropic norm |||F |||a of the system lies "between"normalized
‖F‖2 and ‖F‖∞ norms, it natiural to propose that we have to use Lyapunov
and Riccati equation for anisotropic norm calculation. It is really true, but
for the calculation algorithm we have to add some special time equation.



How to calculate the anisotropic norm in state space II

Anisotropic norm is calculated by the formula

|||F |||a =

(
1

q

(
1− m

Trace (LPL> + Σ)

))1/2

.

q, P, L, Σ are unknown parameters. The can be calculated by solving coupled
equations: (39) ia Riccati equation , (40) is Lyapunov equation, (41) is a
special time equation

R = A>RA + qC>C + L>Σ−1L,

L = Σ(B>RA + qD>C), (39)

Σ = (Im −B>RB − qD>D)−1.

P = (A + BL)P (A + BL)> + BΣB>, (40)

a = −1

2
ln det

(
m Σ

Trace (LPL> + Σ)

)
. (41)



Anisotropy-based control design problem

Let W be generated from m1-dimensional gaussian white noise V с with
zero expectation and unit covariance matrix by unknown generating filter G

from
Ga ≡

{
G ∈ Hm1×m1

2 : A(G) ≤ a
}

. (42)

F

K

¾

-

¾

UY

Z

L(F, K)

¾ W
G ∈ Ga

¾ V



Anisotropic-based optimization problem:

Problem 1 For given system F and mean anisotropy level a ≥ 0 of input
disturbance W find the controller K ∈ K, that minimizes the a-anisotropic
norm of closed loop system Fl(F, K):

|||Fl(F, K)|||a ≡ sup

{‖Fl(F, K)G‖2
‖G‖2 : G ∈ Ga

}
→ inf , K ∈ K . (43)

Let us note if a = 0 , the above problem 4 is coincided with standard
H2 optimization problem (Kolmogorov - Wiener-Hopf-Kalman optimization
problem).



Solution of anisotropic-based design problem

The solution of the problem is reduced to the solving of three
algebraic matrix Riccati equations, Lyapynov equation and
one algebraic equation of special type. If a = 0 the four
matrix equations turn into well known two Riccati equations
from Kalman theory and the equation of special type cancels.



How to find the solution by computer?
Vladimirov’s Package

Crossed- coupled three matrix algebraic Riccati equations, Lyapunov equation
and special type equation have been solving by homotopy method. We reduced
the solution of the algebraic system to differential equation system. The
anisotropy level was the independent variable in those differential systems.
The initial conditions were the solutions of the problem if α = 0, the LQG

problem.

I.G. Vladimirov create the application package (software kit) for MathLab
and programmed it.



Anisotropic controllers in landing approach

w 

h 
V 

o

h is vertical coordinate of aircraft
mass center V is an aircraft speed
relative to wind speed frame
Θ is relative flight-path angle
W is a wind disturbance
Z = [h, V ]T

U = [∆ϑcy, δt]
T are elevator and

power lever .

F

K

W

U

Z

Y

Problem. Design LQG, H∞
and anisotropy controllers,
that solve disturbance
attenuation problem .



Model of wind shear
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Рис. 6: Plots of vertical and horizontal ingredients of wind share profile



Observation coordinates with different types of controllers
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Рис. 7: Plots of V и h for different types of controllers



Control for different types of controllers
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Рис. 8: Control for different types of feedback controllers



Anisotropic-based optimal control problem
for the systems with parametric uncertainties.

Problem 2 For system F , given by




xk+1 = (A + F1ΩkE1) xk + (B0 + F2ΦkE2)wk + (B2 + F3ΨkE3)uk,

zk = C1xk + D12uk,

yk = C2xk + D21wk,

(44)
where Ωk, Φk, Ψk are unknown with conditions:

Ω>k Ωk ≤ I, Φ>k Φk ≤ I, Ψ>k Ψk ≤ I, −∞ < k < +∞, (45)

and for given level of mean anisotropy to find the controller, that minimized

J0(K) = sup
Ωk,Φk,Ψk

|||Fl(F, K)|||a . (46)



Solution of anisotropic-based design problem
with parametric uncertainties

The solution of the problem is reduced to the solving of four
algebraic matrix Riccati equations, Lyapynov equation and
one algebraic equation of special type.



Present of the theory
• Anisotropy-based theory for descriptor systems.
Analysis and synthesis problems.

• Model reduction in Anisotropic theory

• Suboptimal anisotropy- based problem.

• KYP lemma for suboptimal problem.

• LMI methods in Anisotropic theory.
Semidefinite programming in Anisotropic theory.
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Anisotropic-based optimal problem for descriptor systems





Ex(k + 1) = Ax(k) + B1w(k) + B2u(k)

z(k) = C1x(k) + D11w(k) + D12u(k)

y(k) = C2x(k) + D21w(k) + D22u(k)

(47)

rank(E) = r < n.

Problem 3 For given system (51) and mean anisotropy level a ≥ 0 of W

find K minimizing a- anisotropy norm of closed loop system :

|‖Fl(F, K)|‖a = sup

{‖Fl(F, K)G‖2
‖G‖2 : G ∈ Ga

}
→ inf, (48)

Fl(F, K) is low linear fractional transformation.



Anisotropic-based suboptimization problem

Let F be describe by




xk+1 = Axk + B1wk + B2uk

zk = C1xk + D11wk + D12uk

yk = C2xk + D21wk

, −∞ < k < +∞ , (49)

Problem 4 For given system F and mean anisotropy level a ≥ 0 of input
disturbance W find the controller K ∈ K, that minimizes the a-anisotropic
norm of closed loop system Fl(F, K):

|||Fl(F, K)|||a ≡ sup

{‖Fl(F, K)G‖2
‖G‖2 : G ∈ Ga

}
≤ γ, , K ∈ K . (50)



Future of the theory
• Suboptimal problem for descriptor systems.

• How to find generating filter for concrete mean
anisotropy level. Signal processing problem.

• How to extend anisotropic theory to some
non linear systems. Absolute stability.



Anisotropic-based suboptimal problem for descriptor system





Ex(k + 1) = Ax(k) + B1w(k) + B2u(k)

z(k) = C1x(k) + D11w(k) + D12u(k)

y(k) = C2x(k) + D21w(k) + D22u(k)

(51)

rank(E) = r < n.

Problem 5 For given system (51) and mean anisotropy level a ≥ 0 of W

find K minimizing a- anisotropy norm of closed loop system :

|‖Fl(F, K)|‖a = sup

{‖Fl(F, K)G‖2
‖G‖2 : G ∈ Ga

}
≤ γ, (52)

Fl(F, K) is low linear fractional transformation.



Creation of stochastic sequence with given property

Problem 6 Let a level of mean anisotropy a of sequence {wk} be given.
Sequence {wk} is received from white noise by filter





xk+1 = Axk + Bvk,

wk = Cxk + Dvk,
(53)

где A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m.

Matrix A is stable and D is not singular, e.g. ρ(A) < 1, det D 6= 0.

Find the matrixes A, B, C, D.



VERY DIFFICULT PROBLEM

How to extend anisotropic theory
for continue - time systems.


