Skip to main content
top

Measure Concentration Minischool

Date of event

organized by F. Matúš

Institute of Information Theory and Automation, Prague Room 25, UTIA AVCR, Pod Vodárenskou věží 4, 18000 Praha 8

Tuesday, August 21, 2012

  • 9:00-9:30 Introductory examples (F. Matus)
  • 9:30-11:00 Hoeffding and Bennett inequalities [4, 6] (J. Rauh)
  • 11:30-12:30 Improvements of Hoeffding inequalities (P. Harremoes)
  • 14:30-15:30 Concentration functions and inequalities I [5] (S. Weis)
  • 15:30-16:30 Concentration functions and inequalities II (M. Muller)
  • 17:00-18:00 Matrix concentration inequalities (F. Matus)

Wednesday, August 22, 2012

  • 9:00-10:00 Stein’s method for concentration inequalities [3, 1](S. Weis)
  • 10:00-11:00 Talagrand inequality [4] (J. Rauh)
  • 11:30-12:30 Dembo’s proof of Talagrand inequality [2] (F. Matus)
  • 14:30-15:30 Log-Sobolev inequalities (P. Harremoes)
  • 15:30-17:00 Concentration in quantum settings (M. Muller)

References

  • [1] S. Chatterjee (2007) Stein’s method for concentration inequalities. Probab. Th. and Relat. Fields 138 305–321.
  • [2] A. Dembo and O. Zeitouni (1998) Large Deviations Techniques and Applications. Springer, New York.
  • [3] G. Lugosi (2006) Concentration-of-measure inequalities (on web)
  • [4] C. McDiarmid (1998) Concentration. in: Probabilistic Methods for Algorithmic Discrete Mathematics M. Habib et at (Eds.) Springer, Berlin, 195–248.
  • [5] M. Ledoux (2001) The Concentration of Measure Phenomenon. AMS Math. Surveys and Monographs 89.
  • [6] I. Sason (2012) Refined versions of the Azuma-Hoeffding inequality with applications in information theory.
Submitted by kroupa on