Skip to main content
top

RNDr. Tomáš Roubal, Ph.D.

Position
Postdoc
Mail
Room
Phone
2563
Research interests
regularity of mapping, Newton method, Ekeland variational principle

Education 

2021, PhD, Applied Mathematics, University of West Bohemia

Employment history

Research profiles

Research gate

Orcid

LinkedIn

 

Publication outside ÚTIA

  •  Cibulka, R., Dontchev, A. L., Preininger, J., Veliov, V., and Roubal, T. Kantorovich-type theorems for generalized equations. J. Convex Anal. 25, 2 (2018), 459--486.
  •  Cibulka, R., and Roubal, T. Solution stability and path-following for a class of generalized equations. Control systems and mathematical methods in   economics, vol. 687 of Lecture Notes in Econom. and Math. Systems. Springer, Cham, 2018, pp. 57--80.
  •  Cibulka, R., Preininger, J., and Roubal, T. On uniform regularity and strong regularity. Optimization 68, 2-3 (2019), 549--577.
  •  Cibulka, R., Fabian, M., and Roubal, T. An inverse mapping theorem in Fréchet-Montel spaces. Set-Valued Var. Anal. 28, 1 (2020), 195--208.
  •  Cibulka, R., and Roubal, T. Ioffe-type criteria in extended quasi-metric spaces. J. Convex Anal. 27, 1 (2020), 207--228.
  •  Cibulka, R., and Roubal, T. On ranges of non-linear operators. Set-Valued Var. Anal., 30 (2022), 789–810.
  •  Cibulka, R., and Roubal, T. On ranges of set-valued mappings. J. Math. Anal. Appl. 515, 1 (2022).
  •  Cibulka, R., and Roubal, T. A quest for simple and unified proofs in regularity theory: Perturbation stability. arXiv.org. https://arxiv.org/abs/2205.12807 (2022)
     

     

Submitted by marek on