Institute of Information Theory and Automation

You are here

Bibliography

Milan Studený


Books and chapters

  1. Haws D., Cussens J., Studený MilanPolyhedral approaches to learning Bayesian networks , Algebraic and Geometric Methods in Discrete Mathematics, p. 155-188 , Eds: Harrington H. A., Omar M., Wright M. [2017]
  2. Vomlel Jiří, Studený MilanGraphical and Algebraic Representatives of Conditional Independence Models , Advances in Probabilistic Graphical Models, p. 55-80 , Eds: Lucas Peter, Gámez José A., Salmerón Antonio [2007]
  3. Studený MilanProbabilistic Conditional Independence Structures, Springer, (London 2005) [2005]
  4. Studený MilanOther approaches to the description of conditional independence structures , Highly Structured Stochastic Systems, p. 106-108 , Eds: Green P. J., Hjort N. L., Richardson S., Oxford University Press, (New York 2003) Oxford Statistical Science Series. vol.27 [2003]
  5. Studený Milan, Vejnarová JiřinaOn multiinformation function as a tool for measuring stochastic dependence , Learning in Graphical Models, p. 261-297 , Eds: Jordan M. I., Kluwer Academic, (Dordrecht 1998) NATO Science Series. Series D: Behavioural and Social Sciences. vol.89 [1998]
  6. Studený MilanDescription of Conditional Independence Structures by Means of Imsets: A Connection with Product Formula Validity , Uncertainty in Intelligent Systems, p. 179-194 , Eds: Bouchon-Meunier B., Valverde L., Yager R. R., Elsevier, (Amsterdam 1993) [1993]

Journal articles

  1. Studený Milan, Cussens J.Towards using the chordal graph polytope in learning decomposable models , International Journal of Approximate Reasoning vol.88, 1 (2017), p. 259-281, 8th International Conference of Probabilistic Graphical Models, (Lugano, CH, 20160906) [2017] Download
  2. Cussens J., Haws D., Studený MilanPolyhedral aspects of score equivalence in Bayesian network structure learning , Mathematical Programming vol.164, p. 285-324 [2017] Download
  3. Studený Milan, Kroupa TomášCore-based criterion for extreme supermodular functions , Discrete Applied Mathematics vol.206, 1 (2016), p. 122-151 [2016] Download
  4. Tanaka K., Studený Milan, Takemura A., Sei T.A linear-algebraic tool for conditional independence inference , Journal of Algebraic Statistics vol.6, 2 (2015), p. 150-167 [2015] Download
  5. Studený Milan, Haws D.Learning Bayesian network structure: towards the essential graph by integer linear programming tools , International Journal of Approximate Reasoning vol.55, 4 (2014), p. 1043-1071 [2014] Download
  6. Studený Milan, Haws D.C.On polyhedral approximations of polytopes for learning Bayesian networks , Journal of Algebraic Statistics vol.4, 1 (2013), p. 59-92 [2013] Download
  7. Hemmecke R., Lindner S., Studený MilanCharacteristic imsets for learning Bayesian network structure , International Journal of Approximate Reasoning vol.53, 9 (2012), p. 1336-1349 [2012] Download
  8. Studený Milan, Vomlel JiříOn open questions in the geometric approach to structural learning Bayesian nets , International Journal of Approximate Reasoning vol.52, 5 (2011), p. 627-640, Workshop on Uncertainty Processing WUPES'09 /8./, (Liblice, CZ, 19.09.2009-23.09.2009) [2011] Download
  9. Bouckaert R., Hemmecke R., Lindner S., Studený MilanEfficient algorithms for conditional independence inference , Journal of Machine Learning Research vol.11, 1 (2010), p. 3453-3479 [2010] Download
  10. Studený Milan, Vomlel Jiří, Hemmecke R.A geometric view on learning Bayesian network structures , International Journal of Approximate Reasoning vol.51, 5 (2010), p. 578-586, PGM 2008, [2010] Download
  11. Studený Milan, Roverato A., Štěpánová Š.Two operations of merging and splitting components in a chain graph , Kybernetika vol.45, 2 (2009), p. 208-248 [2009] Download
  12. Studený Milan, Vomlel JiříA reconstruction algorithm for the essential graph , International Journal of Approximate Reasoning vol.50, 2 (2009), p. 385-413 [2009] Download
  13. Perez A., Studený MilanComparison of two methods for approximation of probability distributions with prescribed marginals , Kybernetika vol.43, 5 (2007), p. 591-618 [2007] Download
  14. Bouckaert R. R., Studený MilanRacing algorithms for conditional independence inference , International Journal of Approximate Reasoning vol.45, 2 (2007), p. 386-401 [2007] Download
  15. Roverato A., Studený MilanA graphical representation of equivalence classes of AMP chain graphs , Journal of Machine Learning Research vol.7, 6 (2006), p. 1045-1078 [2006] Download
  16. Bouckaert R. R., Studený MilanRacing for conditional independence inference , Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty vol.3571, p. 221-232, ECSQARU 2005. European Conference /8./, (Barcelona, ES, 06.07.2005-08.07.2005) [2005]
  17. Studený MilanCharacterization of inclusion neighbourhood in terms of the essential graph , International Journal of Approximate Reasoning vol.38, 3 (2005), p. 283-309 [2005] Download
  18. Studený MilanCharacterization of essential graphs by means of the operation of legal merging of components , International Journal of Uncertainty Fuzziness and Knowledge-Based Systems vol.12, p. 43-62 [2004]
  19. Studený MilanChain graph models and their causal interpretations - discussion on the paper by Lauritzen and Richardson , Journal of the Royal Statistical Society Series B-Statistical Methodology vol.64, 3 (2002), p. 358 [2002]
  20. Studený MilanOn stochastic conditional independence: the problems of characterization and description , Annals of Mathematics and Artificial Intelligence vol.35, p. 323-341 [2002]
  21. Paz A., Geva R. Y., Studený MilanRepresentation of irrelevance relations by annotated graphs , Fundamenta Informaticae vol.42, 1 (2000), p. 149-199 [2000]
  22. Volf M., Studený MilanA graphical characterization of the largest chain graphs , International Journal of Approximate Reasoning vol.20, 3 (1999), p. 209-236 [1999]
  23. Studený Milan, Bouckaert R. R.On chain graph models for description of conditional independence structures , Annals of Statistics vol.26, 4 (1998), p. 1434-1495 [1998]
  24. Zvárová Jana, Studený MilanInformation theoretical approach to constitution and reduction of medical data , International Journal of Medical Informatics vol.45, 1 (1997), p. 65-74 [1997]
  25. Studený MilanA recovery algorithm for chain graphs , International Journal of Approximate Reasoning vol.17, 213 (1997), p. 265-293 [1997]
  26. Studený MilanSemigraphoids and structures of probabilistic conditional independence , Annals of Mathematics and Artificial Intelligence vol.21, 1 (1997), p. 71-98 [1997]
  27. Zvárová Jana, Studený MilanInformation-theoretic Approach to Constitution and Reduction of Medical Data , International Journal of Medical Informatics vol.45, p. 65-74 [1997]
  28. Matúš František, Studený MilanConditional independences among four random variables I , Combinatorics, Probability and Computing vol.4, p. 269-278 [1995]
  29. Studený MilanDescription of structures of stochastic conditional independence by means of faces and imsets. 2nd part: basic theory. , International Journal of General Systems vol.23, 3 (1995), p. 201-219 [1995]
  30. Studený MilanDescription of structures of stochastic conditional independence by means of faces and imsets. 3rd part: examples of use and appendices , International Journal of General Systems vol.23, 4 (1995), p. 323-341 [1995]
  31. Studený MilanConditional independence and natural conditional functions , International Journal of Approximate Reasoning vol.12, 1 (1995), p. 43-68 [1995]
  32. Studený MilanDescription of structures of stochastic conditional independence by means of faces and imsets. 1st part: introduction and basic concepts , International Journal of General Systems vol.23, 2 (1994), p. 123-137 [1994]
  33. Studený MilanStructural semigraphoids , International Journal of General Systems vol.22, 2 (1994), p. 207-217 [1994]
  34. Lachout Petr, Studený Milan, Šindelář JanOn set-valued measures , Informatica vol.4, p. 21-44 [1993]
  35. Studený MilanConvex Cones in Finite-Dimensional Real Vector Spaces , Kybernetika vol.29, 2 (1993), p. 180-200 [1993]
  36. Malvestuto F. M., Studený MilanComment on "A Unique Formal System for Binary Decompositions of Database Relations, Probability Distributions, and Graphs" , Information Sciences vol.63, p. 1-2 [1992]
  37. Studený MilanMultiinformation and the Problem of Characterization of Conditional Independence Relations , Problems of Control and Information Theory vol.18, 1 (1989), p. 3-16 [1989]
  38. Studený MilanAttempts at Axiomatic Description of Conditional Independence , Kybernetika vol.25, 3 (1989), p. 72-79 [1989]

Other publications

  1. Studený Milan, Kratochvíl VáclavLinear core-based criterion for testing extreme exact games , Proceedings of the 10th International Symposium on Imprecise Probability: Theories and Applications, p. 313-324 , Eds: Antonucci A., Corani G., Couso I., Destercke S., ISISPTA 2017 - International Symposium on Imprecise Probability: Theories and Applications /10./, (Lugano, CH, 20170710) [2017] Download
  2. Studený MilanBasic facts concerning extreme supermodular functions, ÚTIA AV ČR v.v.i, (Praha 2016) Research Report 2359 [2016] Download
  3. Studený Milan, Cussens J.The chordal graph polytope for learning decomposable models , Proceedings of the Eighth International Conference on Probabilistic Graphical Models, p. 499-510 , Eds: Antonucci A., Corani G., Polpo de Campos C., the Eighth International Conference on Probabilistic Graphical Models, (Lugano, CH, 06.09.2016-09.09.2016) [2016] Download
  4. Studený MilanHow matroids occur in the context of learning Bayesian network structure , Uncertainty in Artificial Intelligence, Proceedings of the Thirty-First Conference (2015), p. 832-841, 31st Conference on Uncertainty in Artificial Intelligence, (Amsterdam, NL, 12.07.2015-16.07.2015) [2015] Download
  5. Studený MilanInteger linear programming approach to learning Bayesian network structure: towards the essential graph , Proceedings of the 6th European Workshop on Graphical Models, p. 307-314, 6th European Workshop on Probabilistic Graphical Models (PGM), (Granada, ES, 19.09.2012-21.09.2012) [2012] Download
  6. Studený MilanLP relaxations and pruning for characteristic imsets, ÚTIA AVČR, (Praha 2012) Research Report 2323 [2012] Download
  7. Studený Milan, Haws D., Hemmecke R., Lindner S.Polyhedral approach to statistical learning graphical models , Harmony of Gröbner Bases and the Modern Industrial Society, p. 346-372, The 2nd CREST-SBM International Conference "Harmony of Groebner Bases and the Modern Industrial Society", (Osaka, JP, 28.06.2012-2.07.2012) [2012] Download
  8. Studený Milan, Haws D.On polyhedral approximations of polytopes for learning Bayes nets, ÚTIA AV ČR, (Praha 2011) Research Report 2303 [2011] Download
  9. Studený Milan, Hemmecke R., Lindner S.Characteristic imset: a simple algebraic representative of a Bayesian network structure , Proceedings of the 5th European Workshop on Probabilistic Graphical Models (PGM 2010), p. 257-264 , Eds: Myllymaki Petri, Roos Teemu, Jaakkola Tommi, 5th European Workshop on Probabilistic Graphical Models, (Helsinki, FI, 13.09.2010-15.09.2010) [2010] Download
  10. Studený Milan, Hemmecke R., Vomlel Jiří, Lindner S.Polyhedral approach to statistical learning graphical models , Abstracts of The 2nd CREST-SBM International Conference on Harmony of Groebner Bases and the Moderm Industrial Socienty, p. 1-4, The 2nd CREST-SBM International Conference "Harmony of Groebner Bases and the Moderm Industrial Socienty", (Hotel Hankyu Expo Park, Osaka, JP, 28.06.2010-02.07.2010) [2010] Download
  11. Studený Milan, Vomlel JiříOn open questions in the geometric approach to learning BN structures , WUPES'09, p. 226-236 , Eds: Kroupa T., Vejnarová J., 8th Workshop on Uncertainty Processing, (Liblice, CZ, 19.09.2009-23.09.2009) [2009] Download
  12. Studený MilanMathematical aspects of learning Bayesian networks: Bayesian quality criteria, ÚTIA AV ČR, v.v.i, (Praha 2008) Research Report 2234 [2008] Download
  13. Studený Milan, Vomlel JiříA Geometric Approach to Learning BN Structures , Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM'08), p. 281-288 , Eds: Jaeger Manfred, Nielsen Thomas D., the Fourth European Workshop on Probabilistic Graphical Models (PGM'08), (Hirtshals, DK, 17.09.2008-19.09.2008) [2008] Download
  14. Jiroušek Radim, Kratochvíl Václav, Kroupa Tomáš, Lněnička Radim, Studený Milan, Vomlel Jiří, Hampl P., Hamplová H.An evaluation of string similarity measures on pricelists of computer components , Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./, p. 1-6 , Eds: Kroupa T., Vejnarová J., Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./, (Liblice, CZ, 15.09.2007-18.09.2007) [2007]
  15. Vomlel Jiří, Studený MilanUsing imsets for learning Bayesian networks , Proceedings of Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./, p. 178-189 , Eds: Kroupa T., Vejnarová J., Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /10./, (Liblice, CZ, 15.09.2007-18.09.2007) [2007]
  16. Studený MilanAn algeraic approach to structural learning Bayesian networks , IPMU 2006. Information Processing and Management of Uncertainty in Knowledge-Based Systems, p. 2284-2291 , Eds: Bouchon-Meunier B., Yager R. R., IMPU 2006, (Paris, FR, 02.07.2006-07.07.2006) [2006]
  17. Hamplová H., Ivánek J., Jiroušek Radim, Kroupa Tomáš, Lněnička Radim, Studený Milan, Vomlel JiříDecision support system for comparison of price lists , Proceedings of the 8th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, p. 32-38 , Eds: Kroupa T., Vejnarová J., Oeconomica, (Praha 2005) , Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty /8./, (Třešť, CZ, 18.09.2005-21.09.2005) [2005]
  18. Perez A., Studený MilanComparsion of Two Methods for Approximation of Probability Distributions with Prescribed Marginals, ÚTIA AV ČR, (Praha 2005) Internal Publication 2005/39 [2005]
  19. Studený Milan, Roverato A., Štěpánová Š.Two Operations of Merging Components in a Chain Graph, ÚTIA AV ČR, (Praha 2005) Internal Publication 2005/38 [2005]
  20. Roverato A., Studený MilanA Graphical Representation of Equivalence Classes of AMP Chain Graphs, ÚTIA AV ČR, (Praha 2005) Internal Publication 2005/37 [2005]
  21. Šimeček P., Studený MilanVyužití pojmu Hilbertovy báze pro ověřování hypotézy o shodnosti strukturálních a kombinatorických imsetů , Sborník prací 13. letní školy JČMF ROBUST 2004, p. 395-401 , Eds: Antoch J., Dohnal G., JČMF, (Praha 2004) , ROBUST 2004. Letní škola JČMF /13./, (Třešť, CZ, 07.06.2004-11.06.2004) [2004]
  22. Studený Milan, Vomlel JiříTransition between graphical and algebraic representatives of Bayesian network models , Proceedings of the Second European Workshop on Probabilistic Graphical Models, p. 193-200, Probabilistic Graphical Models PGM'04 /2./, (Leiden, NL, 04.10.2004-08.10.2004) [2004]
  23. Studený MilanStructural imsets: an algebraic method for describing conditional independence structures , Proceedings of the Tenth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, p. 1323-1330, IPMU 2004 /10./, (Perugia, IT, 04.07.2004-09.07.2004) [2004]
  24. Šimeček Petr, Studený MilanVyužití Hilbertovy báze k ověření shodnosti strukturálních a kombinatorických imsetů , Sborník ROBUST 2004, p. 395-402 , Eds: Antoch J., Dohnal G., ROBUST 2004. Letní škola JČMF /13./, (Třešť, CZ, 07.06.2004-11.06.2004) [2004]
  25. Studený MilanCharacterization of inclusion neighbourhood in terms of the essential graph: Lower neighbours , Proceedings of the 6th Workshop on Uncertainty Processing, p. 243-262 , Eds: Vejnarová J., University of Economics, (Prague 2003) , WUPES 2003. Workshop on Uncertainty Processing /6./, (Hejnice, CZ, 24.09.2003-27.09.2003) [2003]
  26. Studený MilanCharacterization of inclusion neighbourhood in terms of the essential graph: upper neighbours , Symbolic and Quantitative Approaches to Reasoning with Uncertainty. European Conference, p. 161-172 , Eds: Nielsen T. D., Zhang N. L., Springer, (Berlin 2003) , ECSQARU 2003. European Conference /7./, (Aalborg, DK, 02.07.2003-05.07.2003) [2003]
  27. Studený MilanO použití řetězcových grafů pro popis struktur podmíněné nezávislosti , ROBUST'2002. Sborník prací dvanácté zimní školy JČMF, p. 292-314 , Eds: Antoch J., Dohnal G., Klaschka J., JČMF, (Praha 2002) , ROBUST'2002 /12./, (Hejnice, CZ, 21.01.2002-25.01.2002) [2002]
  28. Studený MilanCharacterization of essential graphs by means of an operation of legal component merging , Proceedings of the First European Workshop on Probabilistic Graphical Models, p. 161-168 , Eds: Gamez J. A., Salmeron A., University of Castilla, (Cuenca 2002) , European Workshop on Probabilistic Graphical Models /1./ PGM'02, (Cuenca, ES, 06.11.2002-08.11.2002) [2002]
  29. Studený MilanOn methods of description of conditional independence structures. Abstract , Abstracts of the 24th European Meeting of Statisticians & 14th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, p. 333 , Eds: Janžura M., Mikosch T., Institute of Information Theory and Automation, (Prague 2002) , EMS 2002, (Prague, CZ, 19.08.2002-23.08.2002) [2002]
  30. Studený MilanAlgebraic approach to learning Bayesian networks. Abstract , BAYESIAN STATISTICS 7 Programme Abstracts Participants, p. 179, Universitat de Valencia, (Valencia 2002) , Valencia International Meeting on Bayesian Statisitcs /7./, (Playa de las Americas, ES, 01.06.2002-06.06.2002) [2002]
  31. Jiroušek Radim, Studený Milan, Vejnarová JiřinaOpen problems inspired by Albert Perez , Conditionals, Information, Inference, p. 117-128 , Eds: Kern-Isberner G., Rodder W., Fern Universität, (Hagen 2002) , Workshop on Conditionals, Information, and Inference, (Hagen, DE, 13.05.2002-15.05.2002) [2002]
  32. Studený MilanOn non-graphical description of models of conditional independence structure, Katholieke Universiteit, (Leuven 2001) [2001] Download
  33. Kočka T., Bouckaert R. R., Studený MilanOn characterizing inclusion of Bayesian networks , Uncertainty in Artificial Intelligence. Proceeding of the 17th Conference, p. 261-268 , Eds: Breese J., Koller D., Morgan Kaufmann, (San Francisco 2001) , Uncertainty in Artificial Intelligence /17./, (Seattle, US, 02.08.2001-05.08.2001) [2001]
  34. Kočka T., Bouckaert R. R., Studený MilanOn the Inclusion Problem, ÚTIA AV ČR, (Praha 2001) Research Report 2010 [2001]
  35. Studený MilanOn stochastic conditional independence: Problem of characterization and description , Partial Knowledge and Uncertainty: Independence, Conditioning, Inference, p. 5-8 , Eds: Scozzafava R., Vantaggi B., Baltzer Science Publ., (Rome 2000) , Workshop on Partial Knowledge and Uncertainty: Independence, Conditioning, Inference., (Rome, IT, 04.05.2000-06.05.2000) [2000]
  36. Studený Milan, Bouckaert R. R., Kočka T.Extreme Supermodular Set Functions over Five Variables, ÚTIA AV ČR, (Praha 2000) Research Report 1977 [2000]
  37. Matúš František, Studený MilanWorkshop on Conditional Independence Structures and Graphical Models. Book of Abstracts, ÚTIA AV ČR, (Praha 1999) , Conditional Independence Structures and Graphical Models, (Toronto, CA, 27.09.1999-01.10.1999) [1999]
  38. García-Mata Osvaldo, Studený MilanAbout the Closure Operation for Relational Models Induced by Syntactic Inference Rules, ÚTIA AV ČR, (Praha 1999) Research Report 1959 [1999]
  39. Dawid A. P., Studený MilanConditional products: An alternative approach to conditional independence , Artificial Intelligence and Statistics 99. Proceedings, p. 32-40 , Eds: Heckerman D., Whittaker J., Morgan Kaufmann, (San Francisco 1999) , International Workshop on Artificial Intelligence and Statistics /7./, (Fort Lauderdale, US, 03.01.1999-06.01.1999) [1999]
  40. Studený MilanComplexity of structural models , Prague Stochastics '98. Proceedings, p. 521-528 , Eds: Hušková M., Lachout P., Víšek J. Á., JČMF, (Praha 1998) , Prague Stochastics '98, (Praha, CZ, 23.08.1998-28.08.1998) [1998]
  41. Studený MilanBayesian networks from the point of view of chain graphs , Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference, p. 496-503 , Eds: Cooper G. F., Moral S., Morgan Kaufmann, (San Francisco 1998) , Uncertainty in Artificial Intelligence /14./, (Madison, US, 24.07.1998-26.07.1998) [1998]
  42. Studený MilanComparison of graphical approaches to description of conditional independence structures , Proceedings of the 4th Workshop on Uncertainty Processing, p. 156-172, VŠE, (Praha 1997) , WUPES '97 /4./, (Prague, CZ, 22.01.1997-25.01.1997) [1997]
  43. Studený MilanOn marginalization, collapsibility and precollapsibility , Distributions with Given Marginals and Moment Problems, p. 191-198 , Eds: Beneš V., Štěpán J., Kluwer, (Dordrecht 1997) , Distributions with Given Marginals and Moment Problems /3./, (Prague, CZ, 02.09.1996-06.09.1996) [1997]
  44. Studený MilanOn separation criterion and recovery algorithm for chain graphs , Uncertainty in Artificial Intelligence. Proceedings, p. 509-516 , Eds: Horvik E., Jensen F., Morgan Kaufmann Publ., (San Francisco 1996) , Conference on Uncertainty in Artificial Intelligence /12./, (Portland, US, 01.08.1996-04.08.1996) [1996]
  45. Studený MilanOn stochastic conditional independence structures , European Conference on Higly Structured Stochastic Systems. Proceedings, p. 165-169, University of Aalborg, (Rebild 1996) , European Conference on Highly Structured Stochastic Systems /1./, (Rebild, DK, 19.05.1996-24.05.1996) [1996]
  46. Studený MilanOn Recovery Algorithm for Chain Graphs, ÚTIA AV ČR, (Praha 1996) Research Report 1874 [1996]
  47. Zvárová Jana, Studený MilanInformation theoretical approach to constitution and reduction of medical data. Abstract , EuroMISE '95: Information, Health and Education, p. 88 , Eds: Zvárová J., Malá I., EuroMISE Center, (Prague 1995) , TEMPUS International Conference, (Prague, CZ, 20.10.1995-23.10.1995) [1995]
  48. Studený MilanMarginal problem in different calculi of AI , Advances in Intelligent Computing - IPMU '94, p. 348-359 , Eds: Bouchon-Meunier B., Yager R. R., Zadeh L. A., Springer, (Berlin 1995) Lecture Notes in Computer Science. vol.945 , IPMU '94 /5./, (Paris, FR, 04.07.1994-08.07.1994) [1995]
  49. Bouckaert R. R., Studený MilanChain graphs: semantics and expressiveness , Symbolic and Quantitative Approaches to Reasoning and Uncertainty, p. 67-76 , Eds: Froidevaux Ch., Kohlas J., Springer, (Berlin 1995) Lecture Notes in Artificial Intelligence. vol.946 , ECSQARU'95 European Conference, (Fribourg, CH, 03.07.1995-05.07.1995) [1995]
  50. Bouckaert R. R., Studený MilanChain Graphs: Semantics and Expressiveness - Extended Version, ÚTIA AV ČR, (Praha 1995) Research Report 1836 [1995]
  51. Zvárová Jana, Hrach Karel, Malá Ivana, Peleška J., Studený Milan, Štefek Martin, Švejda David, Tomečková M.Managing Uncertainty in Medicine, EuroMISE, (Prague 1995) Research Report [1995]
  52. Zvárová Jana, Studený MilanInformation Theoretical Approach to Constitution and Reduction of Medical Data , EuroMISE 95: Information, Health and Education, p. 88 , Eds: Zvárová J., Malá I., TEMPUS International Conference, (Prague, CZ, 20.10.1995-23.10.1995) [1995]
  53. Studený Milan, Boček PavelCI-models arising among 4 random variables , Uncertainty Processing in Expert Systems. Proceedings, p. 268-282, VŠE, (Praha 1994) , WUPES 1994. Workshop on Uncertainty Processing in Expert Systems /3./, (Třešť, CZ, 11.09.1994-15.09.1994) [1994]
  54. Studený MilanSemigraphoids are two-antecedental approximations of stochastic conditional independence models , Uncertainty in Artificial Intelligence. Proceedings, p. 546-552 , Eds: Mantaras R. L., Poole D., Morgan Kaufmann, (San Francisco 1994) , Uncertainty in Artificial Intelligence /10./, (Seattle, US, 29.07.1994-31.07.1994) [1994]
  55. Studený MilanMarginal problem in different calculi of AI , Information Processing and Management of Uncertainty in Knowledge-Based Systems. Proceedings, p. 597-604, Cité Internationale Universitaire, (Paris 1994) , IPMU '94 /5./, (Paris, FR, 04.07.1994-08.07.1994) [1994]
  56. Studený MilanFormal Properties of Conditional Independence in Different Calculi of AI , Symbolic and Quantitative Approaches to Reasoning and Uncertainty, p. 341-348 , Eds: Clarke M., Kruse R., Moral S., Springer, (Berlin 1993) Lecture Notes in Computer Science. vol.747 , European Conference ECSQARU '93, (Granada, ES, 08.11.1993-10.11.1993) [1993]
  57. Studený Milan, Matúš František, Vejnarová JiřinaDecomposition of Large Systems and Independence Structures , Second European Congress on Systems Science, p. 891-898, Afcet, (Paris 1993) , European Congress on Systems Science /2./, (Prague, CZ, 05.10.1993-08.10.1993) [1993]
  58. Studený MilanPopis struktur podmíněné stochastické nezávislosti pomocí formulí součinového typu , Sborník prací letní školy JČMF ROBUST '92, p. 146-155 , Eds: Antoch J., Dohnal G., JČMF, (Praha 1992) , ROBUST '92, (Herbertov, CS, 14.09.1992-18.09.1992) [1992]
  59. Studený MilanDescription of Conditional Independence Structures by Means of Imsets: A Connection with Product Formula Validity , International Conference on Information Processing and Management of Uncertainty. IPMU '92, p. 503-506, Universitat des les Illes Balears, (Palma 1992) , IPMU '92, (Mallorca, ES, 06.07.1992-10.07.1992) [1992]
  60. Studený MilanMultiinformation and Conditional Independence II, ÚTIA ČSAV, (Praha 1992) Research Report 1751 [1992]
  61. Studený MilanConditional Independence Relations Have No Finite Complete Characterization , Transactions of the Eleventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, p. 377-396 , Eds: Víšek J. Á., Academia, (Prague 1992) , Prague Conference on Information Theory, Statistical Decision Functions, Random Processes /11./, (Prague, CS, 27.08.1990-31.08.1990) [1992]
  62. Lachout Petr, Studený Milan, Šindelář JanOn Set-Valued Measures, ÚTIA ČSAV, (Praha 1992) Research Report 1741 [1992]
  63. Studený MilanConvex set Functions II, ÚTIA ČSAV, (Praha 1991) Research Report 1734 [1991]
  64. Studený MilanConvex Set Functions I, ÚTIA ČSAV, (Praha 1991) Research Report 1773 [1991]
  65. Studený MilanConvex Semigraphoids , Workshop on Uncertainty Processing in Expert Systems, p. - , Eds: Jiroušek R., ÚTIA ČSAV, (Prague 1991) , WUPES '91, (Alšovice, CS, 09.09.1991-12.09.1991) [1991]
  66. Studený MilanConvex cones in Rn, ÚTIA ČSAV, (Praha 1991) Research Report 1724 [1991]
  67. Studený MilanMultiinformace jakožto nástroj pro studium podmíněné stochastické nezávislosti , PROBASTAT '89. Zborník príspevkov, p. 129, VVTŠ, (Liptovský Mikuláš 1989) , PROBASTAT '89, (Liptovský Mikuláš, CS, 03.09.1989-08.09.1989) [1989]
  68. Studený MilanMultiinformation and Conditional Independence I, ÚTIA ČSAV, (Praha 1989) Research Report 1619 [1989]
bocek: 2015-01-12 10:44