Institute of Information Theory and Automation

Pro všechny

Important Dates

 

Submission of papers due:

 

June 28, 2013 JULY 7, 2013

 

Notification of acceptance for the workshop and decision on selection of contributions for the book due:

 

July 19, 2013  SENT

 

Format

This is a one-day workshop in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (

Home

UTIApant.png

                                                                             

Výsledky Soutěže o nejlepší publikaci a aplikaci ÚTIA 2012

KATEGORIE: Publikace všeobecné

1. cena

Bartels S., Kružík M.: An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. In: Multiscale Model. Simul., vol. 9, No. 3, pp. 1276-1300, 2011

Brzeźniak, Z., Ondreját, M.: Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds. In: Communications in Partial Differetial Equations, 36: 1624-1653, 2011

Práce přihlášené do Soutěže o nejlepší publikaci a aplikaci ÚTIA 2012

(v abecedním pořadí podle prvního autora)

Historical publications of AS department

V. Peterka, J. Krýže, and A. Fořtová. Numerical solution of Wiener-Hopf equation in statistical identification of linear dynamic systems. Kybernetika, 2:331-346, 1966. Download.

Seminars MTR department

Title Date&Time
Variational tools in analysis of multifunctions 05.12.2016 - 14:00
Tropical Limits of Probability Spaces. Entropy and Beyond 24.10.2016 - 14:00
Hidden Conflict of Belief Functions / Skrytý konflikt domněnkových funkcí 17.10.2016 - 14:00
Handling multidimensional probability tables by means of Kruskal-form tensors 07.12.2015 - 14:00
Some Results and Problems in the Theory of Fisher Information 23.11.2015 - 14:00
Nash Equilibrium in Pay-as-bid Electricity Market 02.11.2015 - 14:00
Lattices of functional dependences 31.08.2015 - 14:00
Multilinear Secret-Sharing Scheme 18.08.2015 - 14:00
Reasoning about uncertain conditionals 10.08.2015 - 14:00
Consonant Conflicts between Belief Functions 01.06.2015 - 14:00
Shepley's and Partially-Shapley's Axiomatics with Restricted Symmetry 20.10.2014 - 14:00
Algorithmic game theory and games with a low Price of Anarchy 29.09.2014 - 14:00
Solving Two-Player Extensive-Form Games: Algorithms and Compact Strategy Representation 22.09.2014 - 14:00
Points and Lines in Metric Spaces 12.05.2014 - 14:00
Graphical modeling of biological pathways 23.09.2013 - 14:00
Integer Programming for Bayesian Network Structure Learning 02.09.2013 - 14:00
Analysis of DNA Mixtures with Artefacts 18.06.2013 - 14:00
Estimation and tests under L-moment condition models and applications to radar detection 08.04.2013 - 14:00
Accumulation Points of the Iterative Proportional Fitting Procedure 25.02.2013 - 14:00
Nonparametric Estimation of Phylogenetic Tree Distributions 11.09.2012 - 11:00

Bayesian soft sensor: a tool for on-line estimation of the key process variable in cold rolling mills

One of the key objectives of any rolling mill control system is to keep the thickness of the processed material within the prescribed tolerance band, which can be as low as +-10 micrometers for thin strips. Failure to comply with the tolerances results in losses which, according to experts estimate, might go up to 10% of the profit for poorly equipped rolling mills. Unfortunately, no practical direct measurement of the gauge within the rolling gap is possible. Strip thickness can be measured 50--100cm after the rolling gap with a high transport delay (20--120 samples).

Models with strictly bounded noise

A state space model is frequently used for a description of real systems. Usually, some state variables are hidden and cannot be measured directly and some model parameters are unknown. Then, the need for learning, i.e., the state filtering and parameter estimation, arises. Probabilistic models provide a suitable description of the always uncertain reality and call for such approaches as Bayesian learning. Uncertainties are standardly modelled by the Gaussian distribution. This leads to Kalman-filter-based algorithms.

Current projects:

Car transport: Fuel consumption optimization

This research project aims at optimization of fuel consumption both from the economical and ecological points of view.

Contact:

 

Syndicate content
Institute of Information Theory and Automation