Noisy-or classifier*

Jifi Vomlel
Laboratory for Intelligent Systems
University of Economics,

Prague, Czech Republic

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Prague, Czech Republic

vomlel@utia.cas.cz

Abstract

We discuss an application of a family of Bayesian network models —
known as models of independence of causal influence (ICI) — to classifica-
tion tasks with large numbers of attributes. An example of such a task is
categorization of text documents, where attributes are single words from
the documents. The key that enabled application of the ICI models is
their compact representation using a hidden variable. We address the
issue of learning these classifiers by an computationally efficient imple-
mentation of the EM-algorithm. We pay special attention to the noisy-or
model — probably the best known example of an ICI model. The classifica-
tion using the noisy-or model corresponds to a statistical method known
as logistic discrimination. We describe the correspondence. Tests of the
noisy-or classifier on the Reuters dataset show that, despite its simplicity,
it has a competitive performance.

1 Introduction

Automatic classification is one of the basic tasks in the area of artificial intelli-
gence. A classifier is a function that assigns instances represented by attributes
to a class. A number of different approaches were used to solve this problem:
decision trees, neural networks, support vector machines, etc. Bayesian network
classifiers is a group of classifiers that use a Bayesian network — a probabilistic
model — to represent relations between attributes and classes. A good overview
of Bayesian network classifiers is given in [4].

Let {A1,..., A} be a set of attributes and C be a class variable. By A we
will denote the multidimensional variable (Ay,..., Ax) and by a = (aq, ..., ax)

*This work was supported by the Grant Agency of the Czech Republic through grant nr.
201/04/0393 and through the Czech-Austrian grant AKTION KONTAKT 2004/19



2 J. VOMLEL

(b)

Figure 1: Two examples of Bayesian network classifiers

we will denote its states. In this paper we assume binary attributes having
states labeled 0 and 1 and a binary class variable with states also labeled 0 and
1. In Figure 1 (a) we present an example of a Bayesian network model used as
a classifier, whose structure is a complete graph. A disadvantage of this model
is that the representation of this classifier is exponential with respect to the
number of attributes. Consequently, it is difficult to estimate an exponential
number of parameters from limited data and perform computations with the
model.

On the other end of the complexity scale is the Naive Bayes classifier, the
simplest Bayesian network classifier. An example of this classifier is presented
in Figure 1 (b). It relies on a strong assumption of conditional independence of
the attributes given the class. Its advantage is that the parameter estimation
from data can be done efficiently and also class predictions can be very fast.

In this paper we discuss application of a class of simple Bayesian network
models — the models of independence of causal influence (ICI)! — to classifi-
cation with large number of attributes. In an ICI classifier for each attribute
variable A;,j = 1,...,k we have one child A;- that has assigned a conditional
probability distribution P(A’ | A;). Variables A},j = 1,...,k are parents of
the class variable C. Py (C | A’) represents a deterministic function f that
assigns to each combination of values (af,...,a}) a class ¢c. Examples of ICI
models are noisy-or, noisy-and, noisy-max, noisy-min, noisy-add, etc. Following
Srinivas [14] we can represent an ICI model using the Bayesian network with
the structure given in Figure 2.

A Bayesian network model M defines a unique probability distribution Py .
Since we restrict ourselves to ICI models, which form a subclass of Bayesian
network models, the probability distribution Pj; is defined for all combinations
of values (c¢,a’,a) of variables C, A’, and A, respectively. The probability dis-

IThe term independence of causal influence was first used by Heckerman [5]. Previously,
the ICI property was also called causal independence. Since this type of independence need
not be present in causal models only, in our context it might be better to say that attributes
have independent influence on the class variable.



Noisy-or classifier 3

Figure 2: Model of an ICI classifier

tribution Py is given by
k
Py(c,a’;a) = Pylcla’): H Py(aj | az) - Pu(ay) (1)
j=1

where conditional probability Py (c | a’) is one iff ¢ = f(a’), otherwise it is zero.

The original contribution of this paper is the application of ICI models to
classification. In case of the noisy-or model, the classification is equivalent to
logistic regression, which means we do not get any new classifier. However,
we get a new probabilistic interpretation of logistic regression classifiers and a
new algorithm for learning this classifier - the EM-algorithm. An advantage
of the EM-algorithm is that it can be used also for learning from incomplete
data, i.e., from data where some attribute values are missing. However, the
major contribution is that the suggested learning method is directly applicable
to other types of ICI models, namely to noisy-add, noisy-max, and noisy-min. In
case of other ICI-models (in contrast to the equivalence of noisy-or and logistic
regression classifiers) we are not aware of any previously described equivalent
classifiers.

The paper is organized as follows. In Section 2 we propose an efficient
implementation of the EM-algorithm that can be used to learn parameters of
an ICI model. In Section 3 the best known example of an ICI model - the noisy-
or model - is described. In Section 4 we discuss the correspondence between
classification using the noisy-or model and a statistical method known as logistic
discrimination. In Section 5 we compare noisy-or with other classifiers using
the well known Reuters-21578 text categorization collection.

2 Learning parameters of the ICI classifiers

Let D be a set of data, which are independently randomly generated from an
ICI model M with a known function f. Further assume that no additional
information about the class C' is available. Let D = {el,... e"}, where the



4 J. VOMLEL

instances are
R S A SN St B i i
e' ={c,a'} ={c,ai,...,a;}, fori=l,...n.

The learning process aims at parameters (i.e. values of conditional probability
distributions) of the ICI model M that maximize the ability to correctly predict
class C. This can be formalized as maximization of the conditional likelihood
CL of a model M given data D

CL(M|D) = [[Pu(c|a)

or, equivalently, as maximization of the conditional log-likelihood CCL of a
model M given data D

CLL(M | D) = ZlogPM(cﬂai). (2)

Note that this is generally different from learning a model M that fits the data
best, for which the maximization of the (unconditional) log-likelihood of the
model given observed data

LL(M | D) = > logPy(c',a’)
i=1
is appropriate?.

It is important to realize that for an ICI model M the maximization of condi-
tional log-likelihood CLL(Py; | D) and the maximization of log-likelihood yield
equivalent resulting distributions. It follows from the following observation.

The log-likelihood of an ICI model M given data D can be expressed as

LL(M | D) = Y logPul(c a’)

i=1

n k
= Zlog PM(Ci|aia~~~7aZ)'HPM(a§)
i=1 j=1

i=1

n n k
= ZlogPM(ani7 coak) + Zlog H Py (a?)
=1 j=1

n k
= CLL(Py | D)+ log [] Pula}) -

i=1 j=1

Both expressions on the right hand side of the previous formula are negative and
P (ClAg, ..., Ag) and Py(Aj),j =1,...,k are assumed to have independent

2Later we will see that for a certain family of classifiers it does not make any difference
whether we maximize CLL or LL.



Noisy-or classifier )

parameterizations. If we find a Py (C, Ay, ..., Ay) that maximizes LL it has to
maximize CLL as well. Therefore we can use the EM-algorithm to learn model
parameters from the training data (in Section 2.2).

2.1 Transformation of ICI models using a hidden variable

We will derive an efficient implementation of the EM-algorithm that is based
on the transformation of an ICI model using a hidden variable [3, 15]. We
exploit the fact that for most commonly-used functions f the joint probability
of an ICI model can be represented by use of a hidden variable as a product of
two-dimensional potentials.

Let Pps(-) denote the joint distribution of an ICI model (as defined by for-
mula 1). After the application of the transformation by use of a hidden variable
B (for details see [3] or [15]) we can write:

k

k
Pu() = Y | []wi(4).B) ] -¢(B.C)- HPM(Az’vAj) N C)

B \j=1

where B is a hidden variable. This factorization is always possible [15], but for
computational efficiency it is important to define potentials so that variable B
has the minimal number of states.

Minimal factorizations are known for the following functions [13]: maximiza-
tion, minimization, addition, and the parity function. Note that the noisy-or
model corresponds to the noisy-max model in the case of binary variables. The
factorization of noisy-max was originally proposed in [3]. See also [15] for a dis-
cussion on how the transformation of some other models containing functional
dependence can be done. In the following example we will describe a minimal
factorization of the potential representing the OR function.

Example 1 Let B take two states labeled 0 and 1. Define for j € {1,...,k},
aj € {0,1}, and b € {0,1}

1 a} <b
0 otherwise

w0 = { (1)

and for ¢ € {0,1}, b € {0,1}

+1 b=y
p(b,c) = -1 b=y-1 (5)
0 otherwise.

It is not difficult to verify that the potentials ;,5 = 1,...,k and ¢ satisfy
formula (3) for the noisy-or model. O

We can express the suggested transformation of an ICI model graphically:
the original ICI model presented in Figure 2 can be transformed to a decompos-
able model depicted in Figure 3, where each arc corresponds to one potential.



6 J. VOMLEL

Figure 3: Transformed model of an ICI classifier

Lemma 1 provides a recipe for efficient computation of conditional probabil-
ities Pys(A) [ e),j =1,...,k given an instance (data vector) e. It will be used
in the E-step of the EM-algorithm (as it will be described in Section 2.2). We
will use the following notation. Let for j =1,...,k

Vi(A},B) = (A}, B) Pu(A] | A; = a;)
Yi(B) = > Wj(A},B) .
A

Lemma 1 Assume a data vector e corresponding to evidence Ay = aq,..., A =
ag,C=c. Then forf=1,....k

Py (A | e) Z@BC*C V(A B HZ/J
J#L
Proof. From formula 3 it follows that

k
Py(AY,. .. AL |e) Zcp(B,C’—c (H ) - Pu(AS | Aj = ay)
B “1

k
x Z@(B,C—c H
B j=1

For £ =1,...,k we get Py (4] | e) by marginalizing out variables A’ # Aj from
Pr(AL, ..., AL | e), which immediately proves the assertion of the lemma. O

2.2 EM-algorithm

The EM-algorithm, first introduced in [2], is a broadly applicable algorithm for
computing maximum likelihood estimates from incomplete data. For a thor-
ough description of the algorithm see [8]. An efficient implementation of the



Noisy-or classifier 7

algorithm for graphical models was proposed by Lauritzen [7]. However, his
implementation is intractable if applied directly to an ICI model with hundreds
of attributes®.

Every iteration of the EM-algorithm consists of two steps: the expectation
step (E-step) and maximization step (M-step). In our transformed decompos-
able model the E-step corresponds to computing the expected marginal count
n(Aj}, A¢) given data D = {el,...,e"} and model M from the previous step?:

n(Ap, Ag) = > Pu(Ap,Ag|e’) forallt=1,.. .k

i=1

where for each (aj, ar)

o - N Py(A,=a,|e) ifa,=ad}
Pu(Ap = ag, Ap=a | ) = { 0 otherwise.
The maximization step corresponds to setting
/ AZ)
PrAy 4y = MAeAd ek
M( 4 | ) Tl(Ae)

These distributions are used in the next iteration of the EM-algorithm?®.

Note that, during one iteration of the EM-algorithm, the largest tables we
manipulate are two-dimensional; they have a number of entries equal to the
number of states of variable B times number of states of the respective variable.
The lower the number of states of B, the more computationally efficient the
procedure.

3 Noisy-or classifier

The noisy-or model was first introduced by Pearl [9]. As its name suggests it is
a generalization of the deterministic OR relation. It is an ICI model where f is
the OR function, i.e.,

Py(C=0|A"=0)=1and Py(C=0|A"#0)=0 .
Probability distributions Py (A% | 4;), j =1,...,k represent a noise. The joint

probability distribution of the noisy-or model is

k
Pu(:) = Pu(ClAL. . A | [T Pu(A) | 4) - Pu(A)
j=1

3When constructing a junction tree used in the EM-algorithm all parents of node C' would
be married. It would result in one clique containing all attributes and the class node.

4Recall that e’ = {c!,a’} = {c,al,...,al} fori=1,...,n.
5Since we optimize only CLL and not LL we need not update Py (Ag). However, even if
_ n(Ay)

we did, we would simply set Py, (Ag)

n



8 J. VOMLEL

It follows that
Py(C=0[A=a) = [[Pu(4j=0]4,=aq) (6)
J
1= Pu4;=0]4;=aq;) . (7)
J

Py(C=1] A =a)

Using a threshold 0 < ¢ <1 all data vectors a = (aq, ..., ax) such that

Py(C=0|A=a) < t
are classified to class C' = 1.

Remark 1 In order to maximize the conditional log-likelihood CLL(Py; | D)
on training data D the threshold is set to 0.5.

The noisy-or classifier can have the following semantics. If an attribute, say
Aj, is in a state a; then the instance (ai1,...,a;,...,ax) is classified to class
C = 1 unless there is an inhibitory effect, which has probability Py/(A} =
0|A; = a;). All inhibitory effects are assumed to be independent. Therefore the
probability that an instance does not belong to class C, i.e. C = 0, is a product
of all inhibitory effects [[; Pr(A; =0[ A4; = a;)s.

3.1 E-step of the EM-algorithm for the noisy-or

The following lemma is a special case of Lemma 1 for the case of the noisy-or
model. It shows how the updating of the model can be done efficiently in the
E-step of the EM-algorithm proposed in Section 2.2.

Lemma 2 Assume a noisy-or classifier Py and an evidence C = ¢, A = a.
The updated probabilities of A} for £ =1,...,k can be computed as

Py (A =ay | C =c,a)
L ifc=0anda, =0
0 ifc=0anda, =1
= P, (A’=0|A=a) '
1 M\ 4Ly ¢ ‘ ,
z’ :1 —
=\ —TI; Pu(A) = 0] Aj = qy)) ifc=1anda, =0
%'PM(A/Z:HA@:M) ifc=1anda,=1

where z is a normalization constant.

Proof. From Lemma 1 we have that

Pr(Ay | e) ZsoBc—c V(A B) - ] w5 (B (8)
J#L

SNote that the model is asymmetric with respect to the coding of the values of C. The
symmetric model to the noisy-or is the noisy-and model.




Noisy-or classifier 9

where for j =1,...,k:
V(AL B) = (A}, B) - Py(A) | Aj = ay) 9)
Y5(B) = Y ¥i(A},B) . (10)
Al

When we substitute potentials ¢;,j = 1,...,k and ¢ defined in Example 1 into
equations 9 and 10 we get for j =1,...,k

) = Pu(A;=0]A4; =ay)
) =0

Pi(ALB=1) = Pu(A|A;=ay)
) = Pu(A;=0]4; =aq;)
) Py(A; =0]Aj=a;)+Pu(Aj=1|4;=0a;) = 1.

Substitution into equation 8 leads to

Py(A,=1]0,a) = 0

Py(A;=0|1a) o Py(A;=0]Ar=ap)-(1—]]Pul4];=0]4;=a))
J#L
Py(A,=1]1,a) o< Py(A,=1]A;=ay)

3.2 Convergence of the EM-algorithm

Generally, the EM-algorithm need not converge to a global maxima of C'LL.
The usual way to get around this problem is to restart the EM-algorithm from
different starting points and finally select a limit probability distribution that
has the maximal target value.

In case of the general noisy-or model we observed that there were several
global maxima of the log-likelihood. This means that several noisy-or models
with different parameter values maximized the log-likelihood. Consequently, the
parameters of the original noisy-or model were not identifiable. However, in the
experiments it did not cause any problem since all the limit distributions we
got when applying the EM-algorithm to different starting points had the same
log-likelihood value. Furthermore, for each classification task all of the limit
distributions were equivalent to a noisy-or classifier in the canonical form that
will be defined in Section 4.1.

A disadvantage of the EM-algorithm is that it typically converges slowly near
the optimum. However, in the experiments we did, the number of iterations
sufficient to get reasonably close to the limit distribution was always less than
fifty.



10 J. VOMLEL

3.3 A restricted noisy-or classifier

One possibility for getting the parameters of noisy-or models identifiable is to

restrict the family of the noisy-or models by certain constraints. One solution

is to regard only noisy-or classifiers satisfying the property that
Py(A;=0]A;=0) > Py(A;=0]4;=1) > 0

We will call this condition the monotonicity condition.

This requirement means that it is more probable that the instance does not
belong to the class C for A; = 0 then for A; = 1. For example, assume the
interpretation that A; = 1 means that attribute A; is present and that A; =0
means that attribute A; is not present. Then the presence of the attribute
implies a higher probability that the instance belongs to the class C.

Now assume the threshold ¢ to be a parameter of the noisy-or model that
can be learned. Having restricted the family of the noisy-or models by the
monotonicity condition we can require the value

Pu(Ay=0]4;=0) £ 1 (11)

for all j =1,...,k and still construct a noisy-or classifier that has the same be-
havior as any classifier from the restricted family. A noisy-or classifier satisfying
condition 11 will be referred to as a restricted noisy-or classifier. The restricted
noisy-or classifier has only k + 1 parameters’ to be learned from data.

Lemma 3 For any noisy-or classifier satisfying the monotonicity condition we
can construct a restricted noisy-or classifier that assigns instances to the same
class.

Proof. The decision rule of the noisy-or classifier with threshold ¢ is
“If Ppy(C =0] A =a) <t then instance a is classified to class C = 1.”

For a noisy-or classifier Py; and every a it holds

Py(C=0]A=a) = [[Pu(4;=0]4;=aq;)

Py(C=0]A=a) = [[Pu(4j=0]4;=0)- ]]

"ILe., k model parameters plus the threshold.



Noisy-or classifier 11

Define another noisy-or classifier Py, by

Pi(A,=0]4;=0) = 1
Pu(A =0 A =
P (A=0]A4;=1) = ] <
M( 7 | J ) P]VI(A;:0|AJ 0
t

t =

Note that Py,(A} =0[A4; =1) < 1.
Observe that the decision rule of this noisy-or classifier

“If P1,(C=0] A =a) <t then instance a is classified to class C = 1.”

is equivalent to the decision rule of the original noisy-or classifier Py;. a

4 Correspondence between noisy-or and logistic
discrimination

The fundamental assumption of logistic discrimination [1] is that the log-likeli-

hood ratio is assumed to be linear:

Py(C=0|A=a) o |
lOgl—PM(C:o|A:a) - 504';53 aj = Po+ Z B; . (12)

jia;j=1

Typically, By = 5 + log %. From (12) we have that

e e(B+ Y, 8)
Py(C=0]A=a) = T exp(fo + S ymms ) (13)

In logistic discrimination, the overall posterior probability of correct assignment
is maximized if a data vector a is classified to C' = 1 provided

1
1 _Pu(C=0]|A=a)

0. (14)

Logistic discrimination and classification using a noisy-or classifier are equiv-
alent in the sense that, for any logistic regression classifier, we can construct a
noisy-or classifier that provides equivalent results and vice versa. This assertion
is formalized in the following lemmas. Their proofs are constructive, i.e., they
show how an equivalent classifier can be constructed.

Lemma 4 For any logistic regression classifier, we can construct a noisy-or
classifier that assigns instances to the same class as the logistic regression clas-
sifier.

Proof. The decision rule for a logistic regression classifier is:



12 J. VOMLEL

“If Bo + Zj:a7:1 B; < 0 then instance a is classified to class C'=1."

By exponentiation we get

exp(fo) - [ exp(8) < 1 (15)

Jiaj=1

Let the parameters of a noisy-or classifier be defined as

W) for g =1

1+4ex ; )
Pud =01 A =a) = { T

HTP(BJ') for a; = 0.

Note that for a; = 0,1 it holds that 0 < Py (A} =0 | A; = a;) < 1. We can
rewrite inequality 15 as

exp(Bo) - [ [J(1+exp(8)) | - [ [[Pu(A)=0]4;=0a;)| < 1
J J
J
Py(C=0|A=a) < t,
where
1

exp(B) - (IT,(1+exp(8)))

t =

Note that
“If Ppy(C =0] A =a) <t then instance a is classified to class C = 1.”
is the decision rule of the noisy-or classifier with threshold t. O
Lemma 5 For any noisy-or classifier such that for every j and a; = 0,1
Py(A;=0|Aj=a;) > 0

we can construct a logistic regression classifier that assigns instances to the same
class as the noisy-or classifier.

Proof. The decision rule for the noisy-or classifier with threshold ¢ is

“If Ppy(C=0] A =a) <t then instance a is classified to class C = 1.7

Let
pj(a;) = log Pa(A; =0 A4;=ay)
rj = pi(1) —p;(0)
To =

ij(O) :



Noisy-or classifier 13

Then we can write

logPy(C=0|A=a) = ZlogPM(A; =0] A, =aqaj)

J

= > pO+ > D)
j:a;=0 jia;j=1

= > 00+ Y pi(1) —p;(0)
j jiaz=1

= 7’0+ Z T'j .

Jra;=1

Since log is a monotonous function the decision rule for the noisy-or classifier
with threshold ¢ is equivalent to

“If ro — logt + Zj:ajzl r; < 0 then instance a is classified to class C' = 1.”

Thus a logistic regression classifier with parameters

5 =y g P =014 =)
7T T LA =01 4; =0)
Bo = ro—logt = Y logPy(Aj=0]A;=0)—logt

J

provides equivalent results as the noisy-or classifier. O

4.1 Canonical form of a noisy-or classifier

What would be the parameters of the noisy-or classifier Py, we would get after
the transformation of the original noisy-or classifier Py; to logistic classifier
(Lemma 5) and back to the noisy-or (Lemma 4)? Of course, we would get
a classifier that assigns instances to the same class as the original one: the
question is 'what are its parameters?’ After a little algebra we get

Pr(A; =0 A = ay)
Pa(A, = 0] A; = 0) + Pa (A, = 0] A; = 1)

Py(A;=0]4;=qa;) = (16)

. t
U T L (Pu(A, =01 4, =0) + Par(A; =0 4, = 1)) "

Observe that if Ppr(A} = 0] A; =0)+ Py(A; =0 A; =1) =1 for all j
then noisy-or classifier P}, has the same parameters as the original one. We will
say that such a noisy-or classifier is in the canonical form. Formulas 16 and 17
can be used for the transformation of a noisy-or classifier to its canonical form.



14 J. VOMLEL

5 Experimental results

We used the Reuters-21578 text categorization collection (Distribution 1.0) con-
taining the Reuters new stories. More specifically, we used data preprocessed by
Karciauskas [6]. The split of data to the training and testing sets was according
to time of publication of the documents (ModApte). Classes that contained only
one document were eliminated together with the corresponding documents. The
resulting training set contained 7769 documents and testing set 3018 documents.
After removing function words and words that appear only in one document the
feature set contained 15715 words. The tests were performed on the ten classes
containing the most documents. We did not fix the number of features in ad-
vance. Instead, for each class we selected the most informative features out of
15715 binary features using the expected information gain as a feature selection
criteria. Specifically, for each attribute A we computed the expected informa-
tion gain IG(A) = Y, P(A =a)- (H(P(C)) — H(P(C | A = a))), where H
denotes the Shannon entropy. We selected all attributes for which IG(A) was
higher or equal to a threshold®.

We measured the performance of the noisy-or classifiers by commonly used
measures. For each class we counted the number of tested documents:

e classified correctly to the class C =1 ... {p (true positive),

e classified incorrectly to the class C' =1 ... fp (false positive),

e classified correctly out of the class C' =1 ... tn (true negative), and
e classified incorrectly out of the class C' =1 ... fn (false negative).

Commonly used measures based on these counts are

PTECision ™= tp?fp’ recall 0= tp?fn’
_ ___ilp+in } _ 2m
accuracy n= rins fnifp’ Fi-measure F| = o

We provide these measures in percentage scale (i.e., multiplied by 100). Macro-
average is the average of local values of m and p in each class. Micro-average
is computed so that, first, the total sums of tp,fp, and fn are computed over all
ten tested classes. Second, 7w and p are computed according to their definitions,
but from the totals of tp,fp, and fn.

Most classifiers can be tuned so that they sacrifice precision to high recall
or vice versa. We can tune the value of threshold? t of the restricted noisy-or
classifier'®. The point where precision equals to recall is called the break-even
point.

For the comparisons of rTN-OR with other classifiers the threshold ¢ was
tuned on the training data for each class separately, first, with respect to the

8 After few experiments we decided for value 0.005.

9Recall that threshold ¢ is used to assign an instance described by attributes a to class
C=1ifP(C=0]|A=a)<t.

10T.e., a noisy-or classifier that has the value of Pys (A; =0]|A; =0) fixed to one.



Noisy-or classifier 15

accuracy (rN-OR-a) and second, with respect to the Fj-measure (rN-OR-f). In
Figure 4 we present dependence of the micro-average precision and recall of the
restricted noisy-or classifier on the value of the threshold. The micro-average
break-even point was 86%. It corresponds to threshold ¢ = 0.55.

100

80 e M

o
o
x"x
XXX

60 :

~ \

X
X
/

40

20 ff

Precision ——
Recall -

0 0.5 1
Threshold Value

Figure 4: Micro-average precision and recall with respect to the threshold value.

In Table 1 and 2 we compare the accuracy n and the Fj-measure, respec-
tively, of the noisy-or classifiers — two restricted (rN-OR-a and rN-OR-f) and
the general (non-restricted) noisy-or classifier (N-OR) with the fixed threshold
t = 0.5 — with four other classifiers implemented in the Weka system [16]:

e the support vector machine (SMO) - with the degree of the polynomial
kernel equal to one and learned by John C. Platt’s sequential minimal
optimization algorithm [10],

e the logistic classifier (LOG) - a logistic regression model with a ridge
estimator [12],

e the Naive Bayes classifier (NB), and

e the Decision Tree classifier (J48) - the Weka implementation of C4.5 de-
cision tree [11],

all used with the default parameters. We tested the classifiers on a subset of
the Reuters data consisting of the ten largest classes. The classes are ordered
according to the number of documents (nd) in each class.

If we compare two simple probabilistic classifiers — the popular Naive Bayes
model (NB) and the noisy-or model (N-OR) — we can see that N-OR often
provide better results.

Note that the comparisons are somewhat unfair to probabilistic classifiers
since they were learned to maximize the conditional log-likelihood not the Fj-
measure nor the accuracy'!. In contrast to non-probabilistic classifiers the prob-

111n order to be able to compare with classifiers based on different principles we could not
use the conditional log-likelihood measured on testing data as a criteria for the comparisons.



16 J. VOMLEL

Table 1: Comparisons of the accuracy.

class nd J48 NB LOG SMO rN-OR-a rN-OR-f N-OR
earn 1087 97.1 94.8 98.0 98.5 96.3 96.3 96.3
acq 719 | 95.1 95.3 96.3 96.7 93.2 93.3 93.2
crude 189 98.1 97.1 98.4 98.5 98.2 98.1 98.1
money-fx 179 96.1 94.1 96.4 96.3 95.7 95.6 95.8
grain 149 | 99.1 96.4 98.9 99.3 99.4 99.3 99.2
interest 131 96.7 95.8 97.1 96.9 96.8 96.4 96.5
trade 117 97.1 93.8 97.9 98.0 96.3 96.3 96.6
ship 89 | 98.9 988 99.0 98.9 99.0 99.0 98.9
wheat 71 | 99.5 97.6 99.4 99.5 99.5 99.5 99.5
corn 56 | 99.7 97.0 99.6 99.7 99.7 99.7 99.7

Table 2: Comparisons of the Fj-measure.

class nd J48 NB LOG SMO rN-OR-a rN-OR-f N-OR
earn 1087 | 96.0 93.1 97.3 97.9 95.0 94.9 95.0
acq 719 | 89.4  90.2 91.9 92.9 85.2 86.1 85.5
crude 189 | 84.6 79.5 87.6 88.0 86.0 85.6 84.5
money-fx 179 66.1 60.1 67.1 65.6 61.4 63.9 60.9
grain 149 91.0 71.7 88.7 92.8 93.9 93.5 92.7
interest 131 | 58.0 59.9 59.7 56.1 51.0 56.1 40.2
trade 117 63.1 49.5 72.5 72.9 61.7 63.2 51.0
ship 89 | 78.2 81.9 81.5 79.0 81.0 81.2 79.5
wheat 71 | 90.3  65.0 88.6 90.3 90.3 90.3 90.3
corn 56 | 92.6 51.9 89.7 91.8 91.8 91.8 91.8

abilistic classifiers not only classify an instance to a class but also provide the
probability that the classification is correct.

One might expect that due to the equivalence of classification using the
logistic regression (LOG) and using the noisy-or model (N-OR) (as it is described
in Section 4) the two methods should provide equivalent results. But, since LOG
is learned by a different method it need not provide equivalent results as N-OR.
In the experiments with the Reuters dataset often LOG performs better than N-
OR. This suggests that the LOG learning method, which minimizes the negative
log-likelihood plus a ridge estimator is more suitable for the tested data than
the EM-algorithm for N-OR.

However, to provide statistically significant comparisons we would need to
compare the classifiers on several different datasets that would allow us to com-
pute not only the average performance but also the standard errors. The Reuters
data set with the split of data to the training and testing sets according to time
of publication of the documents does not allow us to do that. Another problem
of this split of of data is that the classifier properly tuned on training data need



Noisy-or classifier 17

not preform best on the testing data. We can observe this effect on the rN-OR
classifier, which sometimes — when tuned with respect to a criteria on training
data — performs worse on testing data (measured by the criteria used for tuning)
than its non-tuned version.

6 Conclusions

In this paper we have applied Bayesian network models with attributes of in-
dependent influence on the class variable to the classification task. Our main
motivation was the classification of instances described by a large number of
attributes.

We have described the correspondence between classification using the noisy-
or and the logistic discrimination. We proposed, implemented, and tested an
efficient version of the EM-algorithm, which we used to learn parameters of the
noisy-or classifiers.

We tested the general and restricted versions of the noisy-or classifier on the
Reuters text categorization collection. We observed that despite their simplicity
they have a competitive performance. In the future we plan to study other ICI
classifiers, namely, noisy-add, noisy-max, and noisy-min.

Acknowledgments

I would like to thank Gytis Karciauskas who provided me the preprocessed
Reuters data. I am also grateful to Nevin L. Zhang who provided first feedback
and encouraged me to work on the topic of this paper, Radim Jirousek and
Gernot Kleiter for their suggestions for improving the paper, and anonymous
reviewers of the ECSQARU 2003 conference for their valuable comments and
pointing out the correspondence to logistic discrimination.

References

[1] J. A. Anderson. Logistic discrimination. In P. R. Krishnaiah and L. N.
Kanal, editors, Handbook of Statistics, volume 2, pages 169-191. North-
Holland Publishing Company, 1982.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39:1-38,
1977.

[3] F. J. Diez and S. F. Galdn. An efficient factorization for the noisy MAX.
International Journal of Intelligent Systems, 18(2):165-177, 2003.

[4] N. Friedman, D. Geiger, and M. Goldszmitdt. Bayesian network classifiers.
Machine Learning, 29:131-163, 1997.



18

[5]

J. VOMLEL

David Heckerman and John S. Breese. A new look at causal independence.
In R. Lopez de Mantaras and David Poole, editors, Proc. of the Tenth Conf.
on Uncertainty in Al pages 286-292, 1994.

G. Karciauskas. Text categorization using hierarchical Bayesian networks
classifiers. Master’s thesis, Aalborg University,
http://www.cs.auc.dk/library, 2002.

S. L. Lauritzen. The EM algorithm for graphical association models with
missing data. Computational Statistics & Data Analysis, 19:191-201, 1995.

G. J. McLachlan and T. Krishnan. The EM algorithm and extensions.
Wiley series in probability and statistics. John Wiley & Sons, Inc., 1997.

J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann, 1988.

J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances
in Kernel Methods - Support Vector Learning. MIT Press, 1998.

Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

J.C. van Houwelingen S. le Cessie. Ridge estimators in logistic regres-
sion. Journal of the Royal Statistical Society - Series C: Applied Statistics,
41(1):191-201, 1992.

P. Savicky and J. Vomlel. Factorized representation of functional depen-
dence. International Journal of Approximate Reasoning (submitted), 2004.

Sampath Srinivas. A generalization of the Noisy-Or model. In David Heck-
erman and Abe Mamdani, editors, Proc. of the Ninth Conf. on Uncertainty
in Al pages 208-215, 1993.

J. Vomlel. Exploiting functional dependence in Bayesian network inference.
In A. Darwiche and N. Friedman, editors, Proceedings of the 18th Confer-
ence on Uncertainty in Artificial Intelligence (UAI 2002), pages 528-535,
2002.

Weka 3.2 - data mining with open source machine learning software.
http://www.cs.waikato.ac.nz/ml/weka/, 2002.



