
Triangulation heuristics for BN2O networks?

Petr Savicky1 and Jǐŕı Vomlel2

1 Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 2,
182 07 Praha 8, Czech Republic
http://www.cs.cas.cz/savicky

2 Institute of Information Theory and Automation of the AS CR,
Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 4,
182 08 Praha 8, Czech Republic
http://www.utia.cas.cz/vomlel

Abstract. A BN2O network is a Bayesian network having the structure
of a bipartite graph with all edges directed from one part (the top level)
toward the other (the bottom level) and where all conditional probability
tables are noisy-or gates. In order to perform efficient inference graph-
ical transformations of these networks are performed. The efficiency of
inference is proportional to the total table size of tables corresponding
to the cliques of the triangulated graph. Therefore in order to get ef-
ficient inference it is desirable to have small cliques in the triangulated
graph. We analyze existing heuristic triangulation methods applicable to
BN20 networks after transformations parent divorcing and tensor rank-
one decomposition and suggest several modifications. Both theoretical
and experimental results confirm that tensor rank-one decomposition
yields better results than parent divorcing in randomly generated BN2O
networks, which we tested.

1 Introduction

A BN2O network is a Bayesian network having the structure of a directed bi-
partite graph with all edges directed from one part (the top level) toward the
other (the bottom level) and where all conditional probability tables are noisy-
or gates. Since the table size for a noisy-or gate is exponential in the number
of its parents, graphical transformations of these networks are performed in or-
der to reduce the table size and allow efficient inference. This paper deals with
two transformations - parent divorcing [6] and rank-one decomposition [5, 10,
8]. Typically, in order to get an inference structure, the graph obtained by one

? The authors were supported by the Ministry of Education of the Czech Republic
under the projects 1M0545 (P. Savicky), 1M0572, and 2C06019 (J. Vomlel). J. Vomlel
was also supported by the Eurocores LogICCCC Project LcpR (ICC/08/E010) and
by the project 201/09/1891 of the Grant Agency of the Czech Republic.

of the above transformations is further transformed by the following two con-
secutive steps - moralization and triangulation - that result in an undirected
triangulated graph. The efficiency of inference is proportional to the total table
size (tts) of tables corresponding to the cliques of the triangulated graph. The
size of the largest clique minus one is often called the graph treewidth (tw).
Since BN2O network consists only of binary variables, the size of the largest
probability table is 2tw+1. This is exponential, while the number of probability
tables is polynomial, hence 2tw+1 approximates tts up to a polynomial factor.

In order to get efficient inference it is desirable to have small total table
size in the triangulated graph. Both methods parent divorcing and rank-one
decomposition were designed to minimize the size of probability tables before
triangulation. In this paper, we consider the total table size after triangulation,
which is the crucial parameter for the efficiency of the inference. From this point
of view, parent divorcing appears to be clearly inferior. In Section 2 we show that
the treewidth tw of the optimally triangulated graph of the BN2O network after
rank-one decomposition (base ROD graph) is never larger than the treewidth
of the model preprocessed using parent divorcing (PD) and the same holds for
the total table size tts. Hence, if we can use optimal elimination ordering (EO)
for the transformed graphs, using ROD we never get results worse by more than
a linear term. Since the search for the optimal EO is NP-hard [11], we have to
use heuristics. In this case, ROD is also not worse, since the upper bound on
tw and tts for ROD holds efficiently, i.e. there is an efficient procedure, which
transforms an EO for PD into an EO for base ROD graph with the required
upper bound on tw and tts.

Having the above facts in mind, we concentrate in Section 3 on the search
of a good EO for the BN2O graphs after the ROD transformation. We analyze
existing heuristic triangulation methods applicable to BN20 networks and sug-
gest several modifications. The experimental results in Section 4 confirm that
these modifications further improve the quality of the obtained triangulation of
randomly generated BN2O networks, which we used.

2 Transformations of BN2O networks

First, we briefly introduce the necessary graph notions. For more details see,
e.g. [3].

Definition 1. An undirected graph G is triangulated if it does not contain an
induced subgraph that is a simple cycle (i.e., a cycle without a chord) of length
at least four.

Definition 2. A triangulation of G is a triangulated graph H that contains the
same nodes as G and contains G as a subgraph.

Definition 3. A set of nodes C ⊆ V of a graph G = (V,E) is a clique if it
induces a complete subgraph of G and it is not a subset of the set of nodes of
any larger complete subgraph of G.

Definition 4. For any graph G, let C(G) be the set of all cliques of G.

Definition 5. The treewidth of a triangulation H of G is the maximum clique
size in H minus one. The treewidth of G, denoted tw(G), is the minimum
treewidth over all triangulations H of G.

Definition 6. The table size of a clique C in an undirected graph is the product
of the number of states of variables corresponding to the nodes of the clique C.

In this paper all variables are binary, therefore the table size of a clique C is
2|C|.

Definition 7. The total table size of a triangulation H of G is the sum of table
sizes of all cliques of H. The total table size of a graph, denoted tts(G), is the
minimum total table size over all triangulations H of G.

Definition 8. Elimination ordering of an undirected graph G = (V,E) is a
bijection f : V → {1, 2, . . . , n}.
The meaning of this representation is that for every node u, the number f(u) is
the index of u in the represented ordering.

Definition 9. An elimination ordering f : V → {1, 2, ..., n} of an undirected
graph G = (V,E) is perfect if for all v ∈ V , the set

B(v) = {w ∈ V : {v, w} ∈ E and f(w) > f(v)}

induces a complete subgraph of G.

If a graph possesses a perfect elimination ordering, then it is triangulated. If a
graph G = (V,E) is not triangulated, then we may triangulate it using any given
elimination ordering f by considering the nodes in V in the order defined by f ,
i.e. such that f(v) = 1, 2, . . . , n and sequentially adding edges to E so that after
considering node v the set B(v) induces a complete subgraph of G.

Now, we restrict our attention to the family of BN2O networks and define
the corresponding graphs.

Definition 10. G = (U ∪V,E) is a graph of a BN2O network (BN2O graph) if
it is an acyclic directed bipartite graph, where U is the set of nodes of the top
level, V is the set of nodes of the bottom level, and E is a subset of the set of
all edges directed from U to V , E ⊆ {(ui, vj) : ui ∈ U, vj ∈ V }.
See Fig. 1 for an example of a BN2O graph.

Since the conditional probability tables in the BN20 networks take a special
form - they are noisy-or gates - we can transform the original BN2O graph and
corresponding tables using methods exploiting their special form. In the sequel
we deal with two methods - parent divorcing and rank-one decomposition. Since
we restrict ourselves to analyze graph triangulation, we concentrate only on the
graphical transformations performed when these methods are applied.

The first transformation is parent divorcing [6] and it avoids connecting all
parents of each node of V (in the moralization step) by introducing auxiliary
nodes in between nodes from U and V . The next definition describes the graph
obtained by a specific form of PD together with the moralization step.

u1

v1 v2

u2 u3 u4

Fig. 1. A BN2O graph

Definition 11. The parent divorcing (PD) graph of a BN2O graph G = (U ∪
V,E) is the undirected graph GPD = (U ∪ V ∪W,H), where

W = ∪vi∈V Wi and H = ∪vi∈V Hi

and for each node vi ∈ V with pa(vi) = {uj ∈ U : (uj , vi) ∈ E} the set of
auxiliary nodes

Wi = {wi,j , j = 1, . . . , k = |pa(vi)| − 2}

and the set of undirected edges

Hi = { {wi,1, uj1}, {wi,1, uj2}, {uj1 , uj2},
{wi,2, wi,1}, {wi,2, uj3}, {wi,1, uj3},
. . . ,

{wi,k, wi,k−1}, {wi,k, ujk+1}, {wi,k−1, ujk+1},
{vi, wi,k}, {vi, ujk+2}, {wi,k, ujk+2} } ,

where {uj1 , . . . , ujk+2} = pa(vi).

See Fig. 2 for an example of a PD graph.

v2

u2 u3 u4

w1,1
w2,1

v1

u1

Fig. 2. The PD graph of BN2O graph from Fig. 1

The second transformation - rank-one decomposition - was originally pro-
posed by Dı́ez and Galán [5] for noisy-max models and extended to other models
by Savicky and Vomlel [10, 8].
Definition 12. The rank-one decomposition (ROD) graph of a BN2O graph
G = (U ∪ V,E) is the undirected graph GROD = (U ∪ V ∪W,F) constructed
from G by adding an auxiliary node wi for each vi ∈ V , W = {wi : vi ∈ V }, and
by replacing each directed edge (uj , vi) ∈ E by undirected edge {uj , wi} and
adding an undirected edge {vi, wi} for each vi ∈ V :

F = {{uj , wi} : (uj , vi) ∈ E} ∪ {{vi, wi} : vi ∈ V }

See Fig. 1 for an example of an ROD graph.

w2

v1

u1 u2 u3 u4

w1

v2

Fig. 3. The ROD graph of BN2O graph from Fig. 1

Note that nodes vi ∈ V are simplicial3 in the ROD graph and have degree one
therefore we can perform optimal triangulation of the ROD graph by optimal
triangulation of its subgraph generated by nodes U ∪W [3]. This graph will be
called base ROD graph or shortly BROD graph. For the treewidth it holds

tw(GROD) = max{1, tw (GBROD)}

and for the total table size

tts(GROD) = tts (GBROD) + 4 |W | .

See Figure 4 for the BROD graph of BN2O graph from Fig 1.

Definition 13. A graph H is a minor of a graph G if H can be obtained from
G by any number of the following operations:
– node deletion,
– edge deletion, and
– edge contraction4.

3 A node is simplicial in G if its neighbors generate a complete subgraph of G.
4 Edge contraction is the operation that replaces two adjacent nodes u and v by a

single node w that is connected to all neighbors of u and v.

u1 u2 u3 u4

w1 w2

Fig. 4. The BROD graph of BN2O graph from Fig 1 i.e., the subgraph on the nodes
U ∪W of the ROD graph from Fig. 3.

Lemma 1. The BROD graph is a graph minor of the PD graph.

Proof. For each set of edges Hi in the PD graph (see Definition 11) we delete
the edge {uj1 , uj2} and contract edges

{vi, wi,k}, {wi,k, wi,k−1}, . . . , {wi,2, wi,1}

and name the resulting node wi. By these edge contractions the node wi gets
connected by undirected edges to all uj ∈ pa(vi). By repeating this procedure
for all i, vi ∈ V we get the BROD graph. ut

Theorem 1. The treewidth of the BROD graph is never larger than the treewidth
of the PD graph.

Proof. Due to Lemma 1 the BROD graph is a graph minor of the PD graph.
Therefore we can apply the well-known theorem (see, e.g. Lemma 16 in [2]) that
the treewidth of a graph minor is never larger than the treewidth of the graph
itself. ut

Lemma 2. Let G be a triangulated undirected graph and H be the resulting
graph after a contraction of an edge. Then tts(H) ≤ tts(G).

Proof. Let H be the resulting graph after a contraction of an edge {u, v} in G
replaced by node w in H. Let φ be a mapping of nodes of G onto the nodes of
H such that it is identity, except φ(u) = w and φ(v) = w. Let us prove that
for every clique D in H there exists a clique C in G such that D = φ(C). This
assertion is obvious for cliques of H not containing node w. Le D be a clique in
H containing node w. For |D| = 1 is the assertion is also obvious. For |D| = 2
it holds that D = φ({u, a}) = φ({v, a}) = φ({u, v, a}), where a 6= w is a node
from D. Furthermore, either {u, a}, {v, a}, or {u, v, a} is a clique in G.

Now assume that |D| ≥ 3. Denote

C1 = (D \ {w}) ∪ {u}
C2 = (D \ {w}) ∪ {v}
C3 = (D \ {w}) ∪ {u, v} .

It holds that D = φ(C1) = φ(C2) = φ(C3). To show that either C1 or C2 is a
complete subgraph of G assume by contradiction that neither C1 nor C2 is a
complete subgraph of G. Then there would exist nodes a, b ∈ D \ {w} such that
(a, u) and (b, v) are not edges in G. Since w is connected by an edge to all nodes
from D \ {w}, a 6= b and (a, b), (a, v), and (b, u) are edges of G. Consequently
the cycle (a, v, u, b) does not have a chord in G, which is in contradiction with
the assumption that G is triangulated.

Hence, for some i = 1, 2, Ci is complete in G. Therefore one of Ci, i = 1, 2, 3
must be a clique in G - none of the strict supersets of C3 can be a clique in G
since this would contradict the assumption that D is a clique.

The properties of the mapping φ imply that there is an injective mapping
from C(H) to C(G) non-decreasing the size of the cliques. Hence, we have∑

A∈C(H)

2|A| ≤
∑

A∈C(G)

2|A| ,

which implies tts(H) ≤ tts(G), since G and H are triangulated. ut

Lemma 3. Let G = (V,E) be a triangulated graph with a perfect elimination
ordering f and H = (U,F) be the graph constructed from G by edge {u, v}
contraction with the resulting node named w. Further let f(u) < f(v). Then H
is triangulated and its elimination ordering g constructed from f by:

g(a) =

f(a) if f(a) < f(u)
f(v) if a = w
f(a)− 1 otherwise.

is perfect.

Proof. By the definition of perfect elimination ordering (Definition 9) it is suffi-
cient to show that for all nodes a ∈ U the set

BH(a) = {b ∈ U : {a, b} ∈ F and f(b) > f(a)}

induces a complete subgraph of H. Since f is a perfect elimination ordering of
G it holds for all nodes a ∈ V that the set

BG(a) = {b ∈ V : {a, b} ∈ E and f(b) > f(a)}

induces a complete subgraph of G. Nodes a ∈ U\{w} have either BH(a) = BG(a)
or BH(a) = (BG(a) \ {u, v}) ∪ {w}. In both cases these sets induces a complete
subgraph of H. Every node z ∈ BG(u) is connected by an edge with v in G
since v ∈ BG(u). Therefore {x ∈ BG(u), f(x) > f(v)} ⊆ BG(v). Consequently,
BH(w) = BG(v) and induces a complete subgraph of H. ut

The following two lemmas hold for general graphs, not necessarily triangu-
lated.

Lemma 4. Let S be a set of some sets inducing complete subgraphs of a graph
H. Then S is the set of all cliques of H iff S contains only incomparable pairs
of sets and each set inducing a complete subgraph of H is a subset of an element
of S.

Proof. The set of all cliques satisfies the properties from the lemma. For the
opposite direction assume that S satisfies the properties from the lemma. Then,
S contains all cliques, since a clique is not a subset of any other complete sub-
graph of H. Since S contains only incomparable pairs of complete subgraphs
and contains all cliques, it cannot contain any complete subgraph, which is not
a clique.

Lemma 5. If a graph H is obtained from a graph G by removing an edge {u, v},
then ∑

A∈C(G)

2|A| ≥
∑

A∈C(H)

2|A| .

Proof. Let R = C(G). Let S be the set of sets inducing complete subgraphs of
H of the following two types. Cliques of G not containing both nodes u, v are
elements of S. For each clique C of G, which contains both u, v, the sets inducing
complete subgraphs C \ {u} and C \ {v} of H are elements of S. Hence, S is
a set of some sets inducing the complete subgraphs of H. By construction, we
have ∑

A∈R

2|A| ≥
∑
A∈S

2|A|

since the elements of S, which are not in R, form pairs of sets of the same size
such that R contains their union, which is by one node larger.

Let S′ be the subset of S containing only those elements of S, which are not
properly contained in some other element of S. Clearly, we have∑

A∈R

2|A| ≥
∑

A∈S′

2|A|

It is now sufficient to prove that S′ is the set of all cliques of H by proving
that S′ satisfies the properties from Lemma 4. By construction, it contains only
incomparable sets. Let A induce complete subgraph of H. Then A also induces
a complete subgraph of G and is contained in some clique C of G. If C does
not contain both nodes u, v, then C is in S. If C contains both u, v, then A is
contained in some of the sets C \ {u} and C \ {v} and both of them are in S.
Hence, A is contained in an element of S. Consequently, it is also contained in
an element of S′. ut

Theorem 2. For any given elimination ordering f of the PD graph we can
efficiently construct an elimination ordering g of the BROD graph such that the
treewidth (and the total table size) of the BROD graph triangulated using g is
not larger than the treewidth (and the total table size, respectively) of the PD
graph triangulated using f .

Proof. Let f be an elimination ordering for GPD, which yields a triangulation
Gf

PD. Let us construct a triangulation G′ of the GBROD from Gf
PD using the

same sequence of edge contractions as in the proof of Lemma 1. Along these
transformations we apply Lemma 3 to get an elimination ordering g for G′ and
by repeated application of Lemma 2, we obtain tts(G′) ≤ tts(Gf

PD).
Graph G′ has the same nodes as GBROD and contains GBROD as a subgraph.

Let Gg
BROD be the triangulation of GBROD obtained using the ordering g. In

each step of the process of triangulation of GBROD using g we add only edges,
which belong to G′. Hence, the resulting graph Gg

BROD is a subgraph of G′.
Consequently, by repeated use of Lemma 5 for all edges of G′, which do not
belong to Gg

BROD, we obtain tts(Gg
BROD) ≤ tts(G′). This proves the statement

concerning total table size. The statement concerning treewidth follows from
the fact that Gg

BROD is a graph minor of Gf
PD and, hence, cannot have larger

treewidth. ut

Corollary 1. The total table size of the BROD graph is never larger than the
total table size of the PD graph.

Proof. Use Theorem 2 for elimination ordering f , which yields a triangulation
of PD graph with the smallest total table size. ut

3 Triangulation heuristics

In the previous section we have shown that the PD graph is inferior to the
BROD graph in the sense that we can always triangulate the BROD graph so
that its treewidth (or total table size) is not greater than the treewidth (or total
table size, respectively) of the PD graph. Therefore, in this section, we will pay
attention to efficient triangulation of the BROD graph.

First, we applied several well-know triangulation heuristics to the BROD
graph. We tested minfill [7], maximum cardinality search [9], minwidth [7], H1,
and H6 [4]. Minfill gave by far the best results. The minfill heuristics that returns
an elimination ordering f of G = (V,E) is described in Table 1.

Table 1. The minfill algorithm

For i = 1, . . . , |V | do:

1. For u ∈ V define set of edges F (u) = {{u1, u2} : {u1, u} ∈ E, {u2, u} ∈ E} to be
added for elimination of u.

2. Select a node v ∈ V which adds the least number of edges when eliminated, i.e.,
v ∈ arg minu∈V |F (u) \ E|, breaking ties arbitrarily.

3. Set f(v) = i.
4. Make v a simplicial node in G by adding edges to G, i.e., G = (V, E ∪ F (v)).
5. Eliminate v from the graph G, i.e. replace G by its induced subgraph on V \ {v}.

Return f .

Minfill of the PD graph used for the BROD graph

In our experiments we have observed for some BN2O graphs that the triangula-
tion of PD graph by minfill lead to a graph with a smaller total table size than
the triangulation of BROD graph by minfill. This may seem to contradict the
results from the previous section but it does not since the triangulation heuris-
tics do not guarantee that they find optimal triangulation. In order to avoid this
unwanted phenomenon, we can use the elimination ordering f found by minfill
for the PD graph and construct an elimination ordering g for the BROD graph
using the construction given in the proof of Lemma 2. This lemma guarantees
that the total table size of the BROD graph triangulated using g is not larger
than the total table size of the PD graph triangulated using f . We refer to
this method as minfill-pd and use it as a base method for the comparisons in
Section 4.

Minfill with n steps look-ahead

Since the minfill heuristics is computationally very fast for networks of moderate
size, one can minimize the total number of edges added to the graph after more
than one node is eliminated, i.e., one can look n steps ahead. Of course, this
method scales exponentially, therefore it is computationally tractable only for
small n. We refer to this method as minfill-n-ahd.

Minfill that prefers nodes from the larger level

The following proposition motivates another modification of the minfill heuris-
tics.

Proposition 1. Let G = (U ∪W,F) be a BROD graph. Then

tw(G) ≤ min{|U |, |W |} .

This upper bound on the treewidth suggests a modification of the minfill heuris-
tics. We can enforce edges to be filled in the smaller level only by taking nodes
from the larger level into the elimination ordering first. Within the larger level
we can use the minfill heuristics to choose the elimination ordering of nodes from
this level. This gives treewidth at most the number of nodes in the smaller level.
The nodes from the smaller level are included in the elimination ordering after
the nodes from the larger level. We will refer this method as minfill-pll.

By combination of methods we understand running several methods inde-
pendently and selecting the best result. In particular, we tested this type of
combination of minfill-pll and minfill and refer to this combination as minfill-
comb.

4 Experiments

The test benchmark

In this section we experimentally compare the proposed triangulation heuristics
on 1300 randomly generated BN2O networks. The BN2O graphs were generated
with varying values of the following parameters:

– x, the number of nodes in the top level,
– y, the number of nodes in the bottom level, and
– e, the average number of edges per node in the bottom level.

For each x-y-e type, x, y = 10, 20, 30, 40, 50 and e = 3, 5, 7, 10, 14, 20 (excluding
those with e ≥ x) we generated randomly ten BN2O graphs.

All triangulation heuristics were tested on the BROD graphs GBROD. We
used the total table size tts of the graph Gh

BROD triangulated by a triangulation
heuristics h as the criterion for the comparisons. We used the minfill-pd method
as the base method against which we compared all other tested methods. Since
randomness is used in the triangulation heuristics we run each heuristics ten
times on each model and selected a triangulation with the minimal value of
total table size tts.

Experimental results

For each tested model we computed the decadic logarithm ratio

r(pd, h) = log10 tts
(
Gpd

BROD

)
− log10 tts

(
Gh

BROD

)
,

where h stands for the tested triangulation heuristics. In Table 2 we give fre-
quencies of several intervals of log-ratio r(pd, h) values of the tested heuristics
in the test benchmark.

From the table we can see that in average all tested heuristics perform sig-
nificantly better than minfill-pd, since positive differences of the logarithms are
more frequent and achieve larger absolute value. On the other hand, most of the
heuristics are worse than minfill-pd for some of the models. Since triangulation
heuristics minfill, minfill-pll, and minfill-pd are computationally fast on mod-
erately large networks, the best solution seems to be to run all of these three
heuristics and select the best solution. Already minfill-comb, which is the com-
bination of minfill and minfill-pll eliminates most of the cases, where minfill is
worse than minfill-pd.

5 Conclusions

In this paper we compare two transformations of BN2O networks that allow more
efficient probabilistic inference - parent divorcing and rank-one decomposition.
We prove that the rank-one decomposition is superior to parent divorcing since
with the rank-one decomposition we can always get at least as small total table

Table 2. Frequency of r(pd, h) values of the heuristics tested on the test benchmark.

Intervals of r(pd, h) minfill minfill-1ahd minfill-2ahd minfill-pll minfill-comb

(−3,−2] 5 0 0 0 0
(−2,−1] 26 14 9 0 0

(−1,−0.05] 96 82 76 116 2

(−0.05, 0.05] 518 535 536 695 637

(0.05, 1] 328 339 350 177 334
(1, 2] 116 115 113 101 114
(2, 3] 101 103 104 99 101
(3, 4] 29 31 31 31 31
(4, 5] 27 27 27 27 27
(5, 6] 34 33 33 33 33
(6, 7] 9 10 10 10 10
(7, 8] 3 3 3 3 3
(8, 9] 8 8 8 8 8

size of the resulting triangulated graph as with the parent divorcing, but in many
cases, we may achieve much better result. We perform experiments with different
triangulation heuristics and suggest few modifications of the minfill heuristics
for BN2O networks. The experiments reveal that all proposed heuristics perform
significantly better on average than the heuristics based on elimination ordering
derived from PD graph, but none of the heuristics is universally the best. In
order to get the best result for all models we suggest to run the minfill heuristics
on PD graph minfill-pd, minfill heuristics on the BROD graph minfill, and minfill
that prefers nodes from the larger level on the BROD graph minfill-pll and select
the best solution from these three. If there is enough computational resources
running the minfill n step look-ahead on the BROD graph minfill-n-ahd can
help to find even better triangulation.

Acknowledgments

We would like to thank Mark Chavira for providing us with the code extracted
from Ace [1], which we have used for the construction of PD graphs and for the
computation of elimination orderings in these graphs.

References

1. Ace. A Bayesian network compiler. http://reasoning.cs.ucla.edu/ace/, 2008.

2. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science, 209(1–2):1–45, 1998.

3. H. L. Bodlaender, A. M. C. A. Koster, and F. Van Den Eijkhof. Preprocessing rules
for triangulation of probabilistic networks. Computational Intelligence, 21(3):286–
305, 2005.

4. A. Cano and S. Moral. Heuristic algorithms for the triangulation of graphs. In
B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, editors, Advances in Intelligent
Computing – IPMU ’94: Selected Papers, pages 98–107. Springer, 1994.

5. F. J. Dı́ez and S. F. Galán. An efficient factorization for the noisy MAX. Interna-
tional Journal of Intelligent Systems, 18:165–177, 2003.

6. K. G. Olesen, U. Kjærulff, F. Jensen, F. V. Jensen, B. Falck, S. Andreassen, and
S. K. Andersen. A MUNIN network for the median nerve — a case study on loops.
Applied Artificial Intelligence, 3:384–403, 1989. Special issue: Towards Causal AI
Models in Practice.

7. D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph Theory and Computing, pages 183–217,
1972.

8. P. Savicky and J. Vomlel. Exploiting tensor rank-one decomposition in probabilistic
inference. Kybernetika, 43(5):747–764, 2007.

9. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

10. J. Vomlel. Exploiting functional dependence in Bayesian network inference. In
Proceedings of the 18th Conference on Uncertainty in AI (UAI), pages 528–535.
Morgan Kaufmann Publishers, 2002.

11. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Algebraic
and Discrete Methods, 2:77–79, 1981.

