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Model

General system

F (t, x(t), ẋ(t)) ∈ Λ(t), t ∈ [0,T ] a.e.

x(0) = a

F : [0,T ]× Rn × Rn → Rm a continuously differentiable function

Λ : [0,T ] ⇒ Rm a multifunction independent of the state variable x

If Λ(t) = {0} and F = ẋ(t)− f (t, x(t)), we obtain an ODE

ẋ(t) = f (t, x(t)).
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Typical properties

Sweeping process

−ẋ(t) + f (t, x(t)) ∈ NΓ(t)(x(t))

x(0) = a

Desired reformulation(
x(t)

−ẋ(t) + f (t, x(t))

)
∈ gph NΓ(t)

↓ ↓
F (t, x(t), ẋ(t)) Λ(t)

∇F has artificial rows. The full row rank property of ∇F is usually
not available.

Λ is not regular.
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Two kinks for Λ = gphN[0,1]
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Introduction of control

Controlled system 1

F (t, u(t), x(t), ẋ(t)) ∈ Λ(t), t ∈ [0,T ] a.e.

x(0) = a

Controlled system 2

F (t, u, x(t), ẋ(t)) ∈ Λ(t), t ∈ [0,T ] a.e.

x(0) = a

u control variable

x state variable

Goal: analysis of the solution map S : u 7→ x , known also as
control–to–state operator.
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Application 1

Electrical circuit

−A1(u)ẋ(t)− A0(u)x(t) + f (t) ∈ NΓ(t)(ẋ(t))

A1, A0 parameters of various components of the circuit

x(t) current on these components

7 / 31

Analysis of the solution map governed by a parametrized differential inclusion



Introduction Basic definitions Results

Application 2

Lower level of an dynamic MPEC (Mathematical program with
equilibrium constraints)

min J(u, x)

s.t. x ∈ argmin
x′∈K

L(u, x ′)

u ∈ Ω

Karush–Kuhn–Tucker form

min J(u, x)

s.t. 0 ∈ ∇xL(u, x) + NK (x)

u ∈ Ω

Natural occurrence of gph N.
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Normal cone

Painlewé–Kuratowski upper limit

Limsup
n

An = {x ; ∃xn ∈ An; x is an accumulation point of {xn}}

Normal cone

N̂A(x) = {x∗; 〈x∗, x ′ − x〉 ≤ o(‖x ′ − x‖) for all x ′ ∈ A}
NA(x) = Limsup

x′ A→x

N̂A(x ′)

N̄A(x) = cl co NA(x).

A convex

NA(x) = {x∗; 〈x∗, x ′ − x〉 ≤ 0 for all x ′ ∈ A}.

If A has C1 boundary, all cones are exactly one ray.
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Differences between cones

Regular normal coneLimiting normal coneClarke normal cone
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Subdifferential

Definition

∂̂f (x) = {x∗; (x∗,−1) ∈ N̂epi f (x , f (x))}
∂f (x) = {x∗; (x∗,−1) ∈ Nepi f (x , f (x))}
∂̄f (x) = {x∗; (x∗,−1) ∈ N̄epi f (x , f (x))}

If f convex, then all subdifferentials are equal to the subdifferential
in convex sense.

If f is differentiable, then ∂̂f (x) = {∇f (x)} but ∂f (x) ⊃ {∇f (x)}.

If f is continuously differentiable, then ∂f (x) = {∇f (x)}.
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Coderivative

Subdifferential uses the ordering on R. Unfortunately, this is not
possible if f is multivalued or maps to Rm.

For M : Rn ⇒ Rm we define coderivative D∗M : Rm ⇒ Rn as

D∗M(x , y)(y∗) = {x∗; (x∗,−y∗) ∈ Ngph M(x , y)}.

If M is single–valued and continuously differentiable, then

D∗M(x)(y∗) = D∗M(x ,M(x))(y∗) = (∇M(x))T y∗
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Aubin property

M : Rn ⇒ Rm satisfies the Aubin property at (u, x) if there are
neighborhoods U of u and V of x and a positive number L such that

M(ũ) ∩ V ⊂ M(û) + L‖ũ − û‖B

for all ũ, û ∈ U.

Localization not only in domain but also in range.

For M single–valued the Aubin property coincides with the local
Lipschitzian property.
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Discretization

Controlled system 1

fk(uk , xk , xk+1) ∈ Λk , k = 0, . . . ,K − 1

x0 = a
(1)

S : RKd → RKn

Controlled system 2

fk(u, xk , xk+1) ∈ Λk , k = 0, . . . ,K − 1

x0 = a
(2)

S : Rd → RKn
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Comparison of both systems

The estimate of coderivative has a very similar form for both
systems.

For time–dependent control uk it may be much simpler to verify the
used constraint qualification.

This implies that for an optimal control problem for
time–independent control u it may be advantegous to add artificial
variables uk and set

u1 = · · · = uK .

For time–independent control u it is possible to pass to a limit and
obtain local Lipschitzian property even in the continuous case.
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Applications of coderivative

Theorem

Consider S : Rn → Rm and consider any x ∈ S(u). Suppose that
gph S is locally closed at (u, x). Then S has the Aubin property
around (u, x) if and only if D∗S(u, x)(0) = {0} and in this case

lipS(u, x) = ‖D∗S(u, x)‖∗ := sup
‖x∗‖=1

sup
u∗∈D∗S(u,x)(x∗)

‖u∗‖.

Theorem

Let f (x) = g(F (x)) with F : Rn → Rm and g : Rm → R both
Lipschitz continuous at x. Then

∂f (x) ⊂
⋃

y∗∈∂g(F (x))

D∗F (x)(y∗).
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Necessary optimality conditions

Optimal control problem

min J(u, x)

s.t. fk(uk , xk , xk+1) ∈ Λk

u ∈ Ω.

Assume that S is single–valued. Then

min J(u,S(u))

u ∈ Ω.

Necessary optimality conditions

0 ∈ ∂(J ◦ S)(u) + NΩ(u)

⊂ ∂uJ(u,S(u)) + D∗S(u)(∂xJ(u,S(u))) + NΩ(u)
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Constraint qualification 1

System reformulation

f0(u0, x0, x1) ∈ Λ0

. . . . . .
fK−1(uK−1, xK−1, xK ) ∈ ΛK−1

↓ ↓
F (u, x) Ω

Implicit function theorem: ∇xF has full row rank

Used CQ is implied by: ∇F has full row rank

Weaker CQ but also weaker results (only Lipschitzian continuity of
S).
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Constraint qualification 2

If there exist multipliers

pk ∈ NΛk
(fk(uk , xk , xk+1)), k = 0, . . . ,K − 1 (3)

satisfying the following conditions

Problem (1) : 0 = (∇ufk)Tpk , k = 0, . . . ,K − 1

Problem (2) : 0 =
K−1∑
k=0

(∇ufk)Tpk

and
0 = (∇v fk−1)Tpk−1 + (∇x fk)Tpk , k = 1, . . . ,K

0 = (∇v fK−1)TpK−1.

Then pk = 0.
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Theorem

Consider problem (1) with fk continuously differentiable and Λk

closed. Then for any

u∗ ∈ D∗S(u, x)(x∗) ∈ RKd

with u∗ = (u∗0 , . . . , u∗K−1) and x∗ = (x∗1 , . . . , x∗K ) there exist
multipliers (3) such that

u∗k = (∇ufk)Tpk .

Moreover, the following terminal condition and the adjoint
equations are satisfied.

−x∗K = (∇v fK−1)TpK−1

−x∗k = (∇v fk−1)Tpk−1 + (∇x fk)Tpk , k = 1, . . . ,K
(4)
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Corollary

Consider problem (2) and let the assumptions of the previous
theorem be fulfilled. Then for any

u∗ ∈ D∗S(u, x)(x∗) ∈ Rd

there are multipliers (3) such that

u∗ =
K−1∑
k=0

(∇ufk)Tpk .

Moreover, the terminal condition and adjoint equations (4) are
satisfied.
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Sensitivity analysis

Theorem

If in the setting of the previous corollary it holds that

‖u∗K‖2 ≤ L(K )‖x∗K‖2,

then SK has the Aubin property with modulus L(K ).
Further, assume that SK and S are single–valued. Fix any u ∈ Rd

and ε > 0, set V := B(u, ε) and define

M(K , ε) := sup
ũ∈V

L(K , ũ)

to be the Lipschitzian modulus of SK on V .

22 / 31

Analysis of the solution map governed by a parametrized differential inclusion



Introduction Basic definitions Results

Theorem (continued)

Further consider piecewise constant or piecewise linear extension of
SK (ũ) and assume that SK (ũ) ⇀ S(ũ) in L2([0,T ],Rn) for all
ũ ∈ V . If

M(ε) := limsup
1√
K

M(K , ε) <∞,

then S is locally Lipschitz at V with modulus
√

T M(ε).
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Example

Consider the first application problem

−A1(u)ẏ(t)− A0(u)y(t) + f (t) ∈ NC(t)(ẏ(t))

Perform a discretization

−A1(u)zK
k+1 − A0(u)(yK

k + hK zK
k+1) + f K

k+1 ∈ NCK
k+1

(zK
k+1)

yK
k+1 − yK

k − hK zK
k+1 = 0.

Omit upper indeces and rewrite it into a desired form(
zk+1

−A1(u)zk+1 − A0(u)(yk + hzk+1) + fk+1

)
∈ gph NCk+1

yk+1 − yk − hzk+1 = 0.

Set u to be the control variable and x = (y , z) the state variable.
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Example (continued)

Coderivative estimate

u∗ = −
K∑

k=1

[∇uA0(u)(yk + hzk+1) +∇uA1(u)zk+1]Tqk .

Adjoint equations and terminal condition

pk − (hA0 + A1)qk = hrk − y∗k
rk = rk+1 + A0qk+1 − z∗k

pK − (hA0 + A1)qK = hrK − y∗K
rK = −z∗K .

And multipliers (
pk

qk

)
∈ Ngph NCk

(·)

rk free.

25 / 31

Analysis of the solution map governed by a parametrized differential inclusion



Introduction Basic definitions Results

Lemma

Let A be a positive definite matrix. Consider the following equation

p − Aq = r

which is to be solved for known r with respect to p and q
satisfying pTq ≤ 0.
Denoting

d := min
|x |=1

xTAx ,

then for any p and q solving the equation and satisfying the
constraint, one has

|q| ≤ 1

d
|r |.
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Lemma

Assume that T : Rn ⇒ Rn is a maximal monotone mapping. Then
for every (x , y) ∈ gph T and every(

p
q

)
∈ NgphT (x , y)

one has pTq ≤ 0.

Applied for
T (x) = NC (x),

which is a maximal monotone mapping for convex C .
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Example (continued)

Assumptions

Ai positive definite
Continuous differentiability of u 7→ Ai (u)
C(t) convex for all t

After some computation

‖u∗K‖2 ≤ bc max{cT |A0|ec|A0|T + 1,Tec|A0|T}
√

2Kn‖(y∗K , z∗K )‖2

for some constants b, c .

Hence SK is Lipschitz continuous with modulus

bc max{cT |A0|ec|A0|T + 1,Tec|A0|T}
√

2Kn.
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Example (continued)

Under additional assumptions we obtain

yK ⇒ y

zK ⇀ ẏ in L2

Hence assumptions of the main theorem are fulfilled and

S : u 7→ (y , ẏ)

Rd → L2([0,T ],Rn)× L2([0,T ],Rn)

is Lipschitz continuous

Equivalently
S : u 7→ y

Rd →W 12([0,T ],Rn)

is Lipschitz continuous.
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Final notes

Applied in this field rather unused method for sensitivity analysis of
a parametrized differential inclusion.

This method is particularly suitable for sweeping process.

Managed to derive conditions for Lipschitz continuity of

S : Rd →W 12([0,T ],Rn).

Computed the Lipschitzian modulus.
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Future plans

Create a more general framework and incorporate more possible
problem classes.

Continuous control variable.

Infinite–dimensional range space.
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