Sharing of probabilistic information of Bayesian agents

Bayesian agents

Bayesian agent = set of random variables + joint domain + joint pdf

S agents common set of variables common finite domain pmfs (probability vectors) *true* pmf

$$(X_{1},...,X_{K}) = X$$

 $\{x_{1},...,x_{N}\}$
 $q_{1},...,q_{S}$
p

Supra Bayesian approach

scalar vectors $q_1,...,q_s,p$ vs. random vectors $q_1,...,q_s, p$ scalar matrix Q vs. random matrix Q

p (minus the last element) is continuously distributed cpdf $t_{p|Q}$ given **Q** = Q

estimate p

minimize E [K(**p**||p) | **Q** = Q]

solution $\mathbf{p'} = \mathbf{E}_{t\mathbf{p}|Q} [\mathbf{p} | \mathbf{Q} = Q]$

Construction of $t_{p|Q}$

principle of maximum entropy principle of indifference wouldn't suffice

constraints $E_{tp|Q} [K(q_s || p) | Q = Q] = I_s$

set of simultaneous implicit equations

Dirichlet distribution

 $p' = w_0 q_0 + w_1 q_1 + ... + w_s q_s$

Nuance

K ($q_s || \mathbf{p}$) vs K ($\mathbf{p} || q_s$) Kalenkovich vs Sechkarova

evaluation vs. compomise

union of supports vs. intersection

Extensions

- different supports
 - o union
- generalized moments instead of pmfs
 maximum entropy principle
- different supports + conditional marginal pmfs
 - \circ (X₁,X₂,X₃), first agent q_{X2|X1}
 - \circ extend q₁
 - minimize E [K(q₁ || p) | Q = Q]
 - cpmf calculated from $q_1 = q_{X2|X1}$
 - $q_1 = p'_{X3|X2,X1} * q_{X2|X1} * p'_{X1} on the support of q_{X2|X1}$
 - \blacksquare q₁ = p' elsewhere

Continuous case

S agents common set of variables common bounded domain pdfs *true* pdf

$$(X_{1},...,X_{K}) = \mathbf{X}$$

$$A$$

$$g_{1},...,g_{S}$$

$$g$$

random counterparts **g**₁,...,**g**_s,**g**,**G**

the most entropic random process?

From continuous to discrete

the most entropic random process?

partition $(A_1,...,A_N)$ of A $\mathbf{g} = I_{A1} * \mathbf{p}_1 / B(A_1) + ... I_{AN} * \mathbf{p}_N / B(A_N), \mathbf{p}, \mathbf{p}$

$$t_{p|Q}, E_{tp|Q} [K (g_{s} || g) | G = G] = k_{s}$$

arbitrary synthetic support { $\mathbf{x}_1,...,\mathbf{x}_N$ } q_s(\mathbf{x}_n) = Int (q_s(\mathbf{x}) d \mathbf{x} , \mathbf{x} in A_n)

$$I_s = k_s + Sum (B(A_n) q_s(x_n), n = 1,...,N)$$

What is missing.

- I_s ? where do they come from?
- better method for merging pdfs
- other, less important things