
Discriminative Scoring of Bayesian Network Classifiers:
a Comparative Study

Ad Feelders and Jevgenijs Ivanovs
Department of Information and Computing Science

Universiteit Utrecht, The Netherlands

Abstract

We consider the problem of scoring Bayesian Network Classifiers (BNCs) on the basis of the
conditional loglikelihood (CLL). Currently, optimization is usually performed in BN parameter
space, but for perfect graphs (such as Naive Bayes, TANs and FANs) a mapping to an equivalent
Logistic Regression (LR) model is possible, and optimization can be performed in LR parameter
space. We perform an empirical comparison of the efficiency of scoring in BN parameter space,
and in LR parameter space using two different mappings. For each parameterization, we study two
popular optimization methods: conjugate gradient, and BFGS. Efficiency of scoring is compared
on simulated data and data sets from the UCI Machine Learning repository.

1 Introduction

Discriminative learning of Bayesian Network Clas-
sifiers (BNCs) has received considerable attention
recently (Greiner et al., 2005; Pernkopf and Bilmes,
2005; Roos et al., 2005; Santafé et al., 2005). In dis-
criminative learning, one chooses the parameter val-
ues that maximize theconditionallikelihood of the
class label given the attributes, rather then thejoint
likelihood of the class label and the attributes. It
is well known that conditional loglikelihood (CLL)
optimization, although arguably more appropriate
in a classification setting, is computationally more
expensive because there is no closed-form solution
for the ML estimates and therefore numerical op-
timization techniques have to be applied. Since in
structure learning of BNCs many models have to be
scored, the efficiency of scoring a single model is of
considerable interest.

For BNCs with perfect independence graphs
(such as Naive Bayes, TANs, FANs) a mapping
to an equivalent Logistic Regression (LR) model
is possible, and optimization can be performed in
LR parameter space. We consider two such map-
pings: one proposed in (Roos et al., 2005), and a
different mapping, that, although relatively straight-
forward, has to our knowledge not been proposed
before in discriminative learning of BNCs. We con-
jecture that scoring models in LR space using our

proposed mapping is more efficient than scoring in
BN space, because the logistic regression model has
fewer parameters than its BNC counterpart and be-
cause the LR model is known to have a strictly con-
cave loglikelihood function. To test this hypothesis
we perform experiments to compare the efficiency
of model fitting with both LR parameterizations,
and the more commonly used BN parameterization.

This paper is structured as follows. In section 2
we introduce the required notation and basic con-
cepts. Next, in section 3 we describe two map-
pings from BNCs with perfect graphs to equivalent
LR models. In section 4 we give a short descrip-
tion of the optimization methods used in the experi-
ments, and motivate their choice. Subsequently, we
compare the efficiency of discriminative learning in
LR parameter space and BN parameter space, us-
ing the optimization methods discussed. Finally, we
present the conclusions in section 7.

2 Preliminaries

2.1 Bayesian Networks

We use uppercase letters for random variables and
lowercase for their values. Vectors are written in
boldface. A Bayesian network (BN) (X, G =
(V,E),θ) consists of a discrete random vectorX =
(X0, . . . , Xn), a directed acyclic graph (DAG)G
representing the directed independence graph ofX,

and a set of conditional probabilities (parameters)θ.
V = {0, 1, . . . , n} is the set of nodes ofG, andE
the set of directed edges. Nodei in G corresponds
to random variableXi. With pa(i) (ch(i)) we de-
note the set of parents (children) of nodei in G. We
write XS , S ⊆ {0, . . . , n} to denote the projection
of random vectorX on components with index in
S. The parameter setθ consists of the conditional
probabilities

θxi|xpa(i)
= P (Xi = xi|Xpa(i) = xpa(i)), 0 ≤ i ≤ n

We useXi = {0, . . . , di − 1} to denote the set
of possible values ofXi, 0 ≤ i ≤ n. The set
of possible values of random vectorXS is denoted
XS = ×i∈SXi. We also useX−

i = Xi \ {0}, and
likewiseX−

S = ×i∈SX−
i

In a BN classifier there is one distinguished vari-
able called the class variable; the remaining vari-
ables are called attributes. We useX0 to denote
the class variable;X1, . . . , Xn are the attributes.
To denote the attributes, we also writeXA, where
A = {1, . . . , n}. We defineπ(i) = pa(i)\{0}, the
non-class parents of nodei, andφ(i) = {i} ∪ π(i).

Finally, we recall the definition of aperfectgraph:
a directed graph in which all nodes that have a com-
mon child are connected is calledperfect.

2.2 Logistic Regression

The basic assumption of logistic regression (Ander-
son, 1982) for binary class variableX0 ∈ {0, 1} is

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w0 +
k∑

i=1

wiZi, (1)

where the predictorsZi (i = 1, . . . , k) can be sin-
gle attributes fromXA, but also functions of one or
more attributes fromXA. In words: the log poste-
rior odds are linear in the parameters, not necessar-
ily in the basic attributes.

Generalization to a non-binary class variable
X0 ∈ X0 gives

ln
P (X0 = x0|Z)
P (X0 = 0|Z)

= w
(x0)
0 +

k∑
i=1

w
(x0)
i Zi, (2)

for all x0 ∈ X−
0 . This model is often referred to

as the multinomial logit model or polychotomous
logistic regression model.

It is well known that the loglikelihood function
of the logistic regression model is concave and has
unique maximum (provided the data matrixZ is
of full column rank) attained for finitew except in
two special circumstances described in (Anderson,
1982).

2.3 Log-linear models

Let G = (V,E) be the (undirected) independence
graph of random vectorX, that isE is the set of
edges(i, j) such that whenever(i, j) is not inE, the
variablesXi andXj are independent conditionally
on the rest. The log-linear expansion of a graphical
log-linear model is

lnP (x) =
∑
C⊆V

uC(xC)

where the sum is taken over all complete subgraphs
C of G, and allxC ∈ X−

C , that is,uC(xC) = 0
for i ∈ C and xi = 0 (to avoid overparameteri-
zation). Theu-term u∅(x) is just a constant. It is
well known that for BN’s with perfect directed inde-
pendence graph, an equivalent graphical log-linear
model is obtained by simply dropping the direction
of the edges.

3 Mapping to Logistic Regression

In this section we discuss two different mappings
from BNCs with a perfect independence graph to
equivalent logistic regression models. Equivalent
here means that, assumingP (X) > 0, the BNC and
corresponding LR model, represent the same set of
conditional distributions of the class variable.

3.1 Mapping of Roos et al.

Roos et al. (Roos et al., 2005) define a map-
ping from BNCs whose canonical form is a per-
fect graph, to equivalent LR models. The canonical
form is obtained by (1) taking the Markov blanket
of X0 (2) marrying any unmarried parents ofX0.
This operation does clearly not change the condi-
tional distribution ofX0. They show that if this
canonical form is a perfect graph, then the BNC
can be mapped to an equivalent LR model. Their
mapping creates an LR model with predictors (and
corresponding parameters) as follows

1. Zxpa(0)
= I(Xpa(0) = xpa(0)) with parameter

w
(x0)
xpa(0)

, for xpa(0) ∈ Xpa(0).

2. Zxφ(i)
= I(Xφ(i) = xφ(i)) with parameter

w
(x0)
xφ(i)

, for i ∈ ch(0) andxφ(i) ∈ Xφ(i).

For a given BNC with parameter valueθ an equiva-
lent LR model is obtained by putting

w
(x0)
xpa(0)

= ln θx0|xpa(0)
, w

(x0)
xφ(i)

= ln θxi|xpa(i)

3.2 Proposed mapping

Like in the previous section, we start from the
canonical graph which is assumed to be perfect.
Hence, we obtain an equivalent graphical log-linear
model by simply dropping the direction of the
edges. We then have

ln
P (X0 = x0|XA)
P (X0 = 0|XA)

= ln
P (X0 = x0,XA)/P (XA)
P (X0 = 0,XA)/P (XA)

= ln P (X0 = x0,XA) − lnP (X0 = 0,XA),

for x0 ∈ X−
0 . Filling in the log-linear expansion

for lnP (X0 = x0,XA) andlnP (X0 = 0,XA), we
see immediately thatu-terms that do not containX0

cancel, and furthermore thatu-terms withX0 = 0
are constrained to be zero by our identification re-
strictions. Hence we get

lnP (X0 = x0,xA)− lnP (X0 = 0,xA) =

u{0}(X0 = x0) +
∑
C

uC(X0 = x0,xC) =

w
(x0)
∅ +

∑
C

w
(x0)
xC

whereC is any complete subgraph ofG not con-
tainingX0. Hence, to map to a LR model, we create
variables

I(XC = xC), xC ∈ X−
C

to obtain the LR specification

ln
P (X0 = x0|Z)
P (X0 = 0|Z)

= w
(x0)
∅ +

∑
C

w
(x0)
xC I(XC = xC)

This LR specification models the same set of condi-
tional distributions ofX0 as the corresponding undi-
rected graphical model, see for example (Sutton and
McCallum, 2006).

0

1 2

3 4 5

0

1 2

3 4 5

Figure 1: Example BNC (left); undirected graph
with same conditional distribution of class (right).

3.3 Example

Consider the BNC depicted in figure 1. Assuming
all variables are binary, and using this fact to sim-
plify notation, this maps to the equivalent LR model
(with 9 parameters)

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w∅ + w{1}X1 + w{2}X2+

w{3}X3 + w{4}X4 + w{5}X5+

w{1,2}X1X2 + w{1,3}X1X3 + w{3,4}X3X4

In the parameterization of (Roos et al., 2005), we
map to the equivalent LRRoos model (with 14 pa-
rameters)

ln
P (X0 = 1|Z)
P (X0 = 0|Z)

= w{1,2}=(0,0)Z{1,2}=(0,0)+

w{1,2}=(0,1)Z{1,2}=(0,1) +w{1,2}=(1,0)Z{1,2}=(1,0)+

w{1,2}=(1,1)Z{1,2}=(1,1) +w{1,3}=(0,0)Z{1,3}=(0,0)+

. . . + w{3,4}=(1,1)Z{3,4}=(1,1)+

w{5}=(0)Z{5}=(0) + w{5}=(1)Z{5}=(1)

In both cases we setw(0) = 0.

4 Optimization methods

In the experiments, we use two optimization meth-
ods: conjugate gradient(CG) and variable metric
(BFGS) algorithms (Nash, 1990). Conjugate Gra-
dient is commonly used for discriminative learning
of BN parameters, see for example (Greiner et al.,
2005; Pernkopf and Bilmes, 2005). In a study of
Minka (Minka, 2001), it was shown that CG and
BFGS are efficient optimization methods for the lo-
gistic regression task.

BFGS is a Hessian-based algorithm, which up-
dates an approximate inverse Hessian matrix of size

r2 at each step, wherer is the number of param-
eters. CG on the other hand works with a vector
of sizer. This obviously makes each iteration less
costly, however, in general CG exhibits slower con-
vergence in terms of iterations.

Both algorithms at stepk compute an update di-
rection u(k), followed by a line search. This is
a one-dimensional search, which looks for a step
sizeα maximizingf(α) = CLL(w(k) + αu(k)),
wherew(k) is a vector of parameter values at step
k. It is argued in (Nash, 1990) that neither algo-
rithm benefits from too large a step being taken.
Even more, for BFGS it is not desirable that the in-
crease in the function value is different in magni-
tude from the one determined by the gradient value,
(w(k+1) − w(k))Tg(k). Therefore, simpleaccept-
able point search is suggested for both methods.
In case of CG an additional step is made. Once
an acceptable point has been found, we have suf-
ficient information to fit a parabola to the projec-
tion of the function on the search direction. The
parabola requires three pieces of information: the
function value at the end of the last iteration (or
the initial point), the projection of the gradient at
this point onto the search direction, and the new
function value at the acceptable point. If the CLL
value at the maximum of the parabola is larger than
the CLL value at the acceptable point, then the for-
mer becomes the starting point for the next iteration.
Another approach to CG line search is Brent’s line
search method (Press et al., 1992). It iteratively fits
a parabola to 3 points. The main difference with the
previous approach is that we do find an optimum in
the given update direction. This, however, requires
more function evaluations at each iteration.

In our experiments we use the implementation of
the CG and BFGS methods of theoptim function
of R (Venables and Ripley, 2002) which is based on
the source code from (Nash, 1990). In addition we
implemented CG with Brent’s line search (with rela-
tive precision for Brent’s method set to 0.0002). We
refer to this algorithm as CGB. The conjugate gra-
dient method may use different heuristic formulas
for computing the update direction. Our preliminary
study showed that the difference in performance be-
tween these heuristics is small. We use the Polak-
Ribiere formula, suggested in (Greiner et al., 2005)
for optimization in the BN parameter space.

In our study we compare the rates of convergence
for 9 optimization techniques: 3 optimization al-
gorithms (CG, CGB, BFGS) used in 3 parameter
spaces (LR, LRRoos, BN). We compare conver-
gence in terms of (1) iterations of the update di-
rection calculation, and (2) floating point operations
(flops). The number of flops provides a fair compar-
ison of the performance of the different methods,
but the number of iterations gives us additional in-
sight into the behavior of the methods.

Let costCLL and costgrad denote the costs in
flops of CLL and gradient evaluations respectively,
and let countCLL be the number of times CLL
is evaluated in a particular iteration. We estimate
the cost of one particular iteration of BFGS as
12r2 + 8r + (4r + costCLL)countCLL + costgrad;
the cost of one CG and CGB iteration is10r+(4r+
costCLL)countCLL+costgrad. These estimates are
obtained by inspecting the source code in (Nash,
1990).

5 Parameter learning

5.1 Logistic regression

Equation 2 can be rewritten as follows

P (X0 = x0|Z) =
ew(x0)T

Z∑d0−1
x′0=0 ew(x′0)T

Z
,

where we putZ0 = 1, which corresponds to the in-
tercept, and fixw(0) = 0. wT denotes the transpose
of w. The conditional loglikelihood of the parame-
ters given data is

CLL(w) = log
∏N

i=1 P (x(i)
0 |z(i))

=
∑N

i=1(w
(x

(i)
0)

T
z(i) − log(

∑d0−1
x′0=0 ew(x′0)

T
z(i)

)),

whereN is the number of observations in the data
set. The gradient of the CLL is given by

∂CLL(w)

∂w
(x0)
k

=

∑N
i=1

1{x(i)
0 =x0}

z
(i)
k − ew

(x0)T
z(i)z

(i)
kPd0−1

x′0=0
ew

(x′0)T
z(i)


wherex0 ∈ X−

0 . We note here that the data ma-
trix Z is a sparse matrix of indicators with 1s in

non-zero positions, thus the CLL and gradient func-
tions can be implemented very efficiently. We esti-
mate costs (in flops) according to above formulas:
costCLL = |Z|(d0 − 1) + N(d0 + 2), costgrad =
|Z|d0 + 2Nd0, where |Z| denotes number of 1s
in the data matrix. Here we used the fact that the
multiplication of two vectorsw(x0)Tz(i) requires
|z(i)|−1 flops. In case of LRRoos matrixZ always
contains exactly1 + n − |pa(0)| 1s irrespective of
graph complexity and dimension of attributes. For
our mapping|Z| depends on the sample. In the
experiments we used the following heuristic to re-
duce |Z|: for each attributeXi we code the most
frequent value as 0. We note that|Z| is smaller in
case of our mapping comparing to LRRoos map-
ping, when the structure is not very complex (with
regard to the number of parents and the domain size
of the attributes) and becomes bigger for more com-
plex structures.

5.2 Bayesian Network Classifiers

Here we follow the approach taken in (Greiner et
al., 2005; Pernkopf and Bilmes, 2005). We write

θj
i|k = P (xj = i|xpa(j) = k).

We have constraintsθj
i|k ≥ 0 and

∑dj−1
i=0 θj

i|k = 1.
We reparameterize to incorporate the constraints on
θj
i|k and use different parametersβj

i|k as follows

θj
i|k =

expβj
i|k∑dj−1

l=0 expβj
l|k

The CLL is given by

CLL(β) =
N∑

t=1

(log P (x(t))− log
d0−1∑

x
(t)
0 =0

P (x(t)))

Further expansion may be obtained using the factor-
ization ofP (x) and plugging in expressions forθj

i|k.
It is easy to see that

∂θj
i′|k

∂βj
i|k

= θj
i′|k(1{i=i′} − θj

i|k),

thus

∂P (x)

∂βj
i|k

= 1{xpa(j)=k}P (x)(1{xj=i} − θj
i|k)

Simple calculations result in

∂CLL(β)

∂βj
i|k

=

∑N
t=1

(
1{x(t)

j =i,x
(t)
pa(j)

=k} − 1{x(t)
pa(j)

=k}θ
j
i|k−Pd0−1

x
(t)
0 =0

[P (x(t))(1
{x

(t)
j

=i,x
(t)
pa(j)

=k}
−1

{x(t)
pa(j)

=k}
θj
i|k)]Pd0−1

x
(t)
0 =0

P (x(t))


Note that for eacht andj > 1 only d0dj gradient
values are to be considered. In order to obtainθ
from β we need3|β| flops, where|β| denotes the
number of components ofβ. From the formulas
above we estimatecostCLL = 3|β| + N(nd0 +
2d0 + 2) and costgrad = 3|β| + N(2nd0 + n +
(2d0 + 1)(3 + d1 + . . . + dn)).

Finally, we point out that the cost of the gradi-
ent is very close to the cost of the CLL in case of
LR and is by a factor2 + 2d larger in case of BN.
This suggests that CGB might be better than CG for
BN, but it is very unlikely that it will be better also
for LR and LRRoos parameter spaces. Note that
costCLL(BN) is very close tocostCLL(LR Roos),
which strongly supports the fairness of our cost es-
timates.

5.3 Convergence issues

It is well known that LR has a concave loglikeli-
hood function. Since BNCs whose canonical form
is a perfect graph are equivalent to the LR models
obtained by either mapping, it follows from the con-
tinuity of the mapping fromθ to w, that the CLL
function in the standard BN parameterization also
has only global optima (Roos et al., 2005). This im-
plies that all our algorithms should converge to the
maximal CLL value.

It is important to pick good initial values for the
parameters. The common approach to initialize BN
parameters is to use the (generative) ML estimates.
It is crucial for all three parameter spaces to avoid
zero probabilities, therefore we use Laplace’s rule,
and add one to each frequency. After the initial val-
ues ofθ are obtained, we can derive starting val-
ues forw as well. We simply apply the mappings
to obtain the initial values for the LRRoos and LR
parameters. This procedure guarantees that all algo-
rithms have the same initial CLL value.

6 Experiments

For the experiments we used artificially generated
data sets and data sets from the UCI Machine Learn-
ing Repository (Blake and Merz, 1998). Artifi-
cial data were generated from Bayesian Networks,
where the parameter values were obtained by sam-
pling each parameter from a Dirichlet distribution
with α = 1. We generated data from both simple
and complex structures in order to evaluate perfor-
mance under different scenarios. We generated per-
fect graphs in the following way: for each attribute
we selecti parents: the class node andi − 1 previ-
ous nodes(whenever possible) according to index-
ing, wherei ∈ {1, 2, 3}.

Table 1 lists the UCI data sets used in the ex-
periments, and their properties. To discretize nu-
meric variables, we used the algorithm described in
(Fayyad and Irani, 1993). The? values in the votes
data set were treated as a separate value, not as a
missing value.

Table 1: Data sets and their properties
#Samples #Attr. #Class Max attr. dim.

Glass 214 9 6 4
Pima 768 8 2 4
Satimage 4435 36 7 2
Tic-tac-toe 958 9 2 3
Voting 435 16 2 3

The fitted BNC structures for the UCI data were
obtained by (1) connecting the class to all attributes,
(2) using a greedy generative structure learning al-
gorithm to add successive arcs. Step (2) was not
applied for the Satimage data set for which we fit-
ted the Naive Bayes model. All structures happened
to be perfect graphs, thus there was no need for ad-
justment. In figure 2 we show the structure fitted to
the Pima Indians data set. The other structures were
of similar complexity.

Figure 3 depicts convergence curves for 9 opti-
mization algorithms on the Pima Indians data.

Table 2 depicts statistics for different UCI and ar-
tificial data sets. For each data seti we have start-
ing CLL valueCLLi

ML and maximal (over all algo-
rithms) CLL valueCLLi

max. We define a threshold
ti = CLLi

max−5%∗(CLLi
max−CLLi

ML). For ev-
ery algorithm we computed the number of iterations

0
1

2

3

4

5

6

7

8

Figure 2: Structure fitted to Pima Indians data. The
structure was constructed using a hill climber on the
(penalized) generative likelihood.

0 e+00 2 e+06 4 e+06 6 e+06 8 e+06 1 e+07

−
33

7.
0

−
33

6.
8

−
33

6.
6

−
33

6.
4

−
33

6.
2

flops

C
LL

LR + CG
LR + CG_full.search
LR + BFGS
LR_Roos + CG
LR_Roos + CG_full.search
LR_Roos + BFGS
BN + CG
BN + CG_full.search
BN + BFGS

Figure 3: Optimization curves on the Pima Indians
data.

(flops) needed to reach the threshold. For each data
set these numbers are scaled dividing by the small-
est value. The bound of5% was selected heuris-
tically. This bound is big enough, so all algorithms
were able to reach it before 200 iterations and before
satisfying the stopping criterion. The bound is small
enough, so algorithms make in general quite a few
iterations before achieving it. There are some data
sets, however, on which all algorithms converge fast
to a very high CLL value, and a clear distinction
in performance is visible using a very small bound.
Pima Indians is an example (5% threshold is set to
-337.037). We still see that table 2 contains a quite
fair comparison, except that BFGS methods are un-
derestimated for smaller bounds.

It is very interesting to notice that convergence

Data Set LR LR Roos BN
CG CGB BFGS CG CGB BFGS CG CGB BFGS

Glass 2.1 1.9 1.0 3.0 2.0 1.1 2.4 1.9 1.0
Pima 1.3 1.5 1.8 1.5 1.2 1.8 1.0 1.0 1.8
Satimage 8.2 2.3 1.0 3.3 2.0 1.1 3.0 1.0 1.3
Tic-tac-toe 3.9 2.2 1.5 2.1 1.1 1.2 2.2 1.0 1.3
Voting 3.2 1.8 1.2 1.9 1.3 1.0 1.5 1.0 1.1
1.5.2-3.100 2.8 1.4 1.2 2.3 1.3 1.1 2.0 1.0 1.2
2.5.2-3.100 2.6 2.1 1.4 1.8 1.6 1.3 1.4 1.0 1.0
3.5.2-3.100 2.7 1.8 1.3 2.2 1.0 1.2 1.3 1.2 1.2
1.5.2-3.1000 2.2 2.2 2.2 1.5 1.5 2.5 1.0 1.0 1.5
2.5.2-3.1000 2.2 2.0 1.8 1.2 1.2 1.8 1.0 1.0 2.5
3.5.2-3.1000 3.6 2.2 1.0 1.8 1.6 1.0 1.3 1.3 1.0
1.30.2-3.1000 2.0 1.2 1.0 1.5 1.2 1.5 1.2 1.0 1.2
2.30.2-3.1000 2.0 1.8 2.2 1.6 1.2 1.4 1.4 1.0 1.2
3.30.2-3.1000 2.2 1.2 2.0 1.6 1.0 1.6 1.4 1.0 1.2
1.5.5.1000 3.1 3.2 1.8 2.3 2.3 1.5 1.1 1.1 1.0
2.5.5.1000 6.7 6.9 2.3 3.1 3.0 1.4 1.5 1.5 1.0
3.5.5.1000 4.8 4.2 1.8 2.3 2.2 1.1 1.7 1.7 1.0
mean 3.3 2.4 1.6 2.1 1.6 1.4 1.6 1.2 1.3

Data Set LR LR Roos BN
CG CGB BFGS CG CGB BFGS CG CGB BFGS

Glass 1.0 2.4 3.3 2.6 4.1 8.3 5.9 8.1 12.6
Pima 1.0 2.4 1.6 1.8 2.5 3.1 4.0 6.1 11.0
Satimage 4.6 3.0 1.0 4.6 7.1 3.3 11.5 6.1 7.6
Tic-tac-toe 2.0 3.2 1.0 1.3 1.7 1.3 6.1 4.0 6.0
Voting 1.2 1.9 1.9 1.0 1.8 3.5 3.6 4.2 15.8
1.5.2-3.100 1.0 1.7 1.0 1.2 2.1 1.8 2.9 2.9 5.1
2.5.2-3.100 1.2 2.8 3.5 1.0 2.6 7.4 2.1 3.2 13.2
3.5.2-3.100 1.0 2.4 2.3 1.1 1.4 5.3 2.1 4.4 21.2
1.5.2-3.1000 1.0 2.0 1.7 1.0 1.9 3.9 1.5 2.4 5.5
2.5.2-3.1000 1.5 3.2 2.2 1.0 2.0 4.6 2.3 3.6 25.0
3.5.2-3.1000 1.7 2.6 1.4 1.0 2.2 3.5 2.2 4.3 13.5
1.30.2-3.1000 1.9 3.7 1.0 3.4 8.4 4.3 12.1 17.4 16.6
2.30.2-3.1000 1.0 3.1 2.2 1.2 3.2 3.3 4.9 7.4 11.8
3.30.2-3.1000 1.2 2.3 5.8 1.0 2.4 12.5 4.1 7.6 36.6
1.5.5.1000 1.1 2.8 1.5 1.0 2.4 1.9 1.6 2.4 2.8
2.5.5.1000 2.3 5.6 11.1 1.0 2.2 10.1 1.7 2.4 11.6
3.5.5.1000 2.6 5.4 101.5 1.0 2.3 98.1 2.4 3.8 137.5
mean 1.6 3.0 8.5 1.5 3.0 10.4 4.2 5.3 20.8

Table 2: Convergence speed in terms of iterations (top) and flops (bottom). Artificial data sets are named
in the following way: [number of parents of each attribute].[number of attributes].[domain size of each
attribute].[sample size]. Domain size denoted as 2-3 is randomly chosen between 2 and 3 with equal proba-
bilities.

with regard to iterations is faster in BN and
LR Roos parameter spaces. It seems that overpa-
rameterization is advantageous in this respect. This
might be explained by the fact that there is only a
single global optimum in the LR case, whereas there
are many global optima in case of BN and LRRoos.
Thus, in the latter case one can ’quickly’ converge to
the closest optimum. Overparameterization, how-
ever, is also an additional burden, as witnessed by
the flops count; this is especially true for the BFGS
method.

We observe that BFGS is generally winning, with
CGB being close, in terms of iterations. Consid-
ering flops, CGB is definitely losing to CG in all
parameterizations. CG seems to be the best tech-
nique, though it might be very advantageous to use
BFGS for simple (with respect to the number of par-
ents and the domain size of attributes) structures, in
combination with our LR mapping.

We have both theoretical and practical evidence
that our LR parameterization is the best for rela-
tively simple structures. So the general conclusion
is to use LR + BFGS, LR + CG and LRRoos + CG
in order of growing structure complexity. The size
of the domain and the number of parents mainly in-
fluence our choice. On the basis of flop counts, the
BN parameterization is never preferred in our ex-
periments. Finally, we note that our LR parameteri-
zation was the best on 4 out of 5 UCI data sets.

7 Conclusion

We have studied the efficiency of discriminative
scoring of BNCs using alternative parameteriza-
tions of the conditional distribution of the class vari-
able. In case the canonical form of the BNC is a per-
fect graph, there is a choice between at least three
parameterizations. We found out that it is wise to
exploit perfectness by optimizing in LR or LRRoos
spaces. Based on the experiments we have per-
formed, we would suggest to use LR + BFGS, LR +
CG and LRRoos + CG in order of growing struc-
ture complexity. If only one method is to be se-
lected, we suggest LRRoos + CG. It works pretty
well on any type of data set, plus the mapping is
very straightforward, which makes the initialization
step easy to implement.

References

J. A. Anderson. 1982. Logistic discrimination. In P. R.
Krishnaiah and L. N. Kanal, editors,Classification,
Pattern Recognition and Reduction of Dimensionality,
volume 2 ofHandbook of Statistics, pages 169–191.
North-Holland.

C.L. Blake and C.J. Merz. 1998. UCI
repository of machine learning databases
[http://www.ics.uci.edu/∼mlearn/mlrepository.html].

U. Fayyad and K. Irani. 1993. Multi-interval discretiza-
tion of continuous valued attributes for classification
learning. In Proceedings of IJCAI-93 (volume 2),
pages 1022–1027. Morgan Kaufmann.

R. Greiner, S. Xiaoyuan, B. Shen, and W. Zhou. 2005.
Structural extension to logistic regression: Discrimi-
native parameter learning of belief net classifiers.Ma-
chine Learning, 59:297–322.

T. Minka. 2001. Algorithms for maximum-likelihood
logistic regression. Technical Report Statistics 758,
Carnegie Mellon University.

J. C. Nash. 1990. Compact Numerical Methods for
Computers: Linear Algebra and Function Minimisa-
tion (2nd ed.). Hilger.

F. Pernkopf and J. Bilmes. 2005. Discriminative ver-
sus generative parameter and structure learning of
Bayesian network classifiers. InICML ’05: Proceed-
ings of the 22nd international conference on Machine
learning, pages 657–664, New York. ACM Press.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vet-
terling. 1992.Numerical Recipes in C: the art of sci-
entific computing. Cambridge.

T. Roos, H. Wettig, P. Gr̈unwald, P. Myllym̈aki, and
H. Tirri. 2005. On discriminative Bayesian network
classifiers and logistic regression.Machine Learning,
59:267–296.

G. Santaf́e, J. A. Lozano, and P. Larrañaga. 2005. Dis-
criminative learning of Bayesian network classifiers
via the TM algorithm. In L. Godo, editor,ECSQARU
2005, volume 3571 ofLecture Notes in Computer Sci-
ence, pages 148–160. Springer.

C. Sutton and A. McCallum. 2006. An introduction to
conditional random fields for relational learning. In
L. Getoor and B. Taskar, editors,Introduction to Sta-
tistical Relational Learning. MIT Press. To appear.

W.N. Venables and B.D. Ripley. 2002.Modern Applied
Statistics with S (fourth edition). Springer, New York.

