Evaluace modelů scintigrafických obrazových sekvencí

Ondřej Tichý

17.12.2012 seminář AS, UTIA

Task Specification

Structure of Function?

Scintigraphy:

Task Specification

Renal Scintigraphy

Task Specification

Renal Scintigraphy

Samples from the sequence:

◆ロ〉 ◆御 ▶ ◆臣 ▶ ◆臣 > ○日 ○ のへで

Relative Renal Function

How to Compute?

Directly from well separated data in ROI.

Relative Renal Function

How to Compute?

Directly from well separated data in ROI.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Patlak-Rutland plot.

Relative Renal Function

How to Compute?

Directly from well separated data in ROI.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Patlak-Rutland plot.
- From decomposed image.

Variational Factor Analysis (FA)

General model of factor analysis is given by equation:

$$\mathbf{d}_t = \sum_{k=1}^r \mathbf{a}_k \mathbf{x}_{t,k} + \mathbf{e}_t \tag{1}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Variational Factor Analysis (FA)

General model of factor analysis is given by equation:

$$\mathbf{d}_t = \sum_{k=1}^r \mathbf{a}_k \mathbf{x}_{t,k} + \mathbf{e}_t \tag{1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Assumptions and issues are:

- 1. Poisson observation noise
- 2. Positivity of factor images and factor curves
- 3. Unknown number of factors

FA + Regions of Interest (FAROI)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FA + Regions of Interest (FAROI)

Each pixel $\mathbf{a}_{i,j}$ in the factor image \mathbf{a}_j has an indicator variable $\mathbf{i}_{i,j}$ such that

 $\mathbf{i}_{i,j} = \begin{cases} 1 & \text{i-th pixel has non-zero activity in the j-th factor,} \\ 0 & \text{i-th pixel has zero activity in the j-th factor.} \end{cases}$ (2)

FA with Convolution (CFA)

Motivation:

The time-activity curves of organs are convolution of the input activity (the blood) and organ-specific kernels

Probabilistic Modeling in Renal Scintigraphy FA with Convolution (CFA)

Motivation:

- The time-activity curves of organs are convolution of the input activity (the blood) and organ-specific kernels
- The shape of the kernels is expected to be formed by a constant plateau followed by monotonic decrease to zero

◆ロ▶ ◆聞▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Data

 107 data sets are available on http://www.dynamicrenalstudy.org/ since March 2012.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data are well described.

Data

- 107 data sets are available on http://www.dynamicrenalstudy.org/ since March 2012.
- Data are well described.

◆ロ → ◆御 → ◆臣 → ◆臣 → ○ 臣 → のへで

Data

> 99 datasets are used (2 kidneys are required).

Data

- > 99 datasets are used (2 kidneys are required).
- Each dataset: 180 images taken after each 10 seconds as a matrix of 128 × 128 pixels.

Data

- 99 datasets are used (2 kidneys are required).
- Each dataset: 180 images taken after each 10 seconds as a matrix of 128 × 128 pixels.

Our objection:

 Assessment of relative renal function using: FA, FAORI, CFA, manualy...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

threshold = 0.5

Results

Expert values (from database) are taken as a ground truth.

Results

Expert values (from database) are taken as a ground truth.

Algorithm	<3%	<5%	<10%	>10%
manual	18.7%	36.4%	70.8%	29.2%

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results

Expert values (from database) are taken as a ground truth.

Algorithm	<3%	<5%	<10%	>10%
manual	18.7%	36.4%	70.8%	29.2%
FA	23.9%	39.5%	81.2%	18.8%

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results

Expert values (from database) are taken as a ground truth.

Algorithm	<3%	<5%	<10%	>10%
manual	18.7%	36.4%	70.8%	29.2%
FA	23.9%	39.5%	81.2%	18.8%
FAROI	34.3%	54.1%	84.4%	15.6%

Results

Expert values (from database) are taken as a ground truth.

Algorithm	<3%	<5%	<10%	>10%
manual	18.7%	36.4%	70.8%	29.2%
FA	23.9%	39.5%	81.2%	18.8%
FAROI	34.3%	54.1%	84.4%	15.6%
CFA	42.7%	63.5%	89.6%	10.4%

Results

• Here, healthy kidneys are taken (RRF 45% - -55%).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Results

• Here, healthy kidneys are taken (RRF 45% - -55%).

Algorithm	<3%	<5%	<10%	>10%
manual	27%	59.4%	89.2%	10.8%

Results

• Here, healthy kidneys are taken (RRF 45% - -55%).

Algorithm	<3%	<5%	<10%	>10%
manual	27%	59.4%	89.2%	10.8%
FA	27%	40.5%	91.9%	8.1%

Results

• Here, healthy kidneys are taken (RRF 45% - -55%).

Algorithm	<3%	<5%	<10%	>10%
manual	27%	59.4%	89.2%	10.8%
FA	27%	40.5%	91.9%	8.1%
FAROI	43.2%	62.1%	94.6%	5.4%

Results

• Here, healthy kidneys are taken (RRF 45% - -55%).

Algorithm	<3%	<5%	<10%	>10%
manual	27%	59.4%	89.2%	10.8%
FA	27%	40.5%	91.9%	8.1%
FAROI	43.2%	62.1%	94.6%	5.4%
CFA	43.2%	67.5%	100%	0%

Results

• Here, harmed kidneys are taken (RRF 56% - -99%).

Results

• Here, harmed kidneys are taken (RRF 56% - -99%).

Algorithm	<3%	<5%	<10%	>10%
manual	10.8%	17.3%	47.8%	52.2%

Results

• Here, harmed kidneys are taken (RRF 56% - -99%).

Algorithm	<3%	<5%	<10%	>10%
manual	10.8%	17.3%	47.8%	52.2%
FA	19.5%	39.1%	69.6%	30.4%

Results

• Here, harmed kidneys are taken (RRF 56% - -99%).

Algorithm	<3%	<5%	<10%	>10%
manual	10.8%	17.3%	47.8%	52.2%
FA	19.5%	39.1%	69.6%	30.4%
FAROI	26%	43.4%	71.7%	28.3%

Results

• Here, harmed kidneys are taken (RRF 56% -99%).

Algorithm	<3%	<5%	<10%	>10%
manual	10.8%	17.3%	47.8%	52.2%
FA	19.5%	39.1%	69.6%	30.4%
FAROI	26%	43.4%	71.7%	28.3%
CFA	41.3%	58.6%	80.4%	19.6%

Future

- Add information from heart ROI.
- Suppression of background.
- Compare the methods for RRF assesment.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Thank you for your attention.

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●