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Motivation

Identification and control of the real systems

Bayesian decision making theory

Real system description

ARX model + normal noise
State-space model + normal noise

Prediction and control ⇒ estimation and filtering
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Motivation

ARX model + normal noise → LS
State model + normal noise → KF
⊕ Reasonable approximation of reality
⊕ Well algorithmically processed
	 Unsatisfactory in some applications
	 Problems with strictly bounded parameters

Unknown but bounded errors
⊕ Restricted support
	 Without statistical tools

Problem solution: Models with uniform noise
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Underlined theory

Bayesian probabilistic approach

model - probability density (pd)

Bayes rule:
f (X|data) ∝ f (data|X)f (X)

MAP estimation

X̂ = arg maxX∗f (data|X)f (X)
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Uniform ARX model - description

yt = ψ′tθ + et

t - discrete time, t ∈ t∗ = 1, 2, ...,T
yt - measured output
ψt = [yt−1, . . . , yt−n, ut , . . . , ut−n] - regression vector,
θ = [a1, . . . , an, b0, . . . , bn] - regression coefficients,
et ∼ U(−r , r) - measurement noise.
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ARX model - parameter estimation

Parameters Θ = (θ, r)

f (Θ|data) ∝ 1

rνt
χ(M)

M :

{
prior information
ARX model & data

Statistics:
counter νt = νt−1 + 1
data matrix W ′

t =
[
W ′

t−1,Ψt

]
Ψt - data vector; Ψ′t ≡ [yt , ψ

′
t ]
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ARX model - approximation

Point MAP estimate → linear programming (LP)

size of data matrix Wt increases with the time
⇒ recursive estimation needs approximation

original Wt → approximated Vt

Problems solved:

choice of size of matrix Vt ⇔ memory length

update and approximation:
Vt−1 + Ψt → Vt
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ARX model - approximation - variants

First in - first out principle:
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ARX model - approximation - variants

Removal of the least informative data:
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ARX model - approximation - variants

Circumscribing:
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State-space model with uniform noise (SU model)

For t ∈ t∗ = 1, 2, . . . ,T

xt = g(xt−1,ut) + wt ; f (wt |q) = U (−q,q)

yt = h(xt) + et ; f (et |r) = U (−r, r)

ut - input
xt - state
yk - output
g , h - real vector functions
wt , et - state and output noises
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SU model - pdf representation

X =
[

x′t−∆ . . . x′t q′ r′
]′

f (X|data) ∝
m∏
i=1

q
−(∆+1)
i

n∏
j=1

r
−(∆+1)
j χ(S)

S :


prior information
state-space model & data
restriction on states
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SU model - estimation

The MAP estimate of X:

X̂ = arg minX∈S

 m∑
i=1

ln(qi ) +
n∑

j=1

ln(rj)


The MAP estimate → non-linear programming form
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SU model - variants

SU model with missing data

linear SU model with unknown model matrices

linear SU model with correlated noise
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SU model - estimates characteristics

Window ∆ ⇒ multiple state estimates

time estimates

t: x̂t x̂t−1 . . . x̂t−∆

t + 1: x̂t+1 x̂t . . . x̂t−∆+1
...

...
t + ∆: x̂t+∆ . . . x̂t

Model:
f (x̂t|t , . . . , x̂t|t+∆|xt , ρ)
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“data”

x̂t|t , . . . , x̂t|t+∆

statistics

s = min
{
x̂t|k
}

s = max
{
x̂t|k
}

n

interval estimate

[E [xt − ρ|s, s, n], E [xt + ρ|s, s, n]]
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Application - Queue length estimation

Model of controlled intersection - quantities:

- measured - intensity It and Yt , occupancy Ot

- estimated - length of the car queue ξt , parameters κ, β, λ
- given - green time zt , sat. flow S , turning rates α
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Application - Estimation of moving vehicle position
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Conclusion - Benefits of uniform models

They

allow estimation of the noise range

respect hard bounds on the estimated quantities

enable the joint estimation of parameters, states, and noise
bounds

fit to robust-control applications

provide an easy entry of the partial knowledge on the model
matrices

update estimates on the whole window of the length ∆

enable parameter tracking
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Thank you for your attention!
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