Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimizatior task

Solution

Computation of Lagr. multipliers

Discussion regarding the optimization task based on constrained minimum cross entropy

Vladimíra Sečkárová

Seminar AS

08.10.2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Optimization task

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimization task

Solution

Computation of Lagr. multipliers We are looking for the solution of the following optimization task (constrained minimum cross entropy):

$$\min_{\pi} \int_{H \times \ldots \times H} \pi(h_{1:n}|D) \log \frac{\pi(h_{1:n}|D)}{q(h_{1:n})} dh(x_1) \ldots dh(x_n) \quad (1)$$

s.t.

$$\mathbf{E}_{\pi(h_{1:n}|D)}[\mathrm{KL}(g_j|h_{1:n})|D] \leq \beta_j \quad j = 1, \dots, s,$$
(2)

where KL stands for the Kullback-Leibler divergence and $h_{1:n} = (h(x_1), \ldots, h(x_n)).$

Solution

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimization task

Solution

Computation of Lagr. multipliers Under the following choice of the prior distribution $q(h_{1:n})$ (Dirichlet Dir(1/n, ..., 1/n)):

$$q(h_{1:n}) = rac{1}{rac{(\Gamma(1/n))^n}{\Gamma(1)}} \prod_{i=1}^n h(x_i)^{1/n-1}$$

the solution of the optimization task (1) s.t. (2) is:

1

$$\hat{\pi}(h_{1:n}|D) = \frac{1}{\frac{\prod_{i=1}^{n} \Gamma(1/n + \sum_{j} \lambda_j g_j(x_i))}{\Gamma(1 + \sum_{j} \lambda_j)}} \prod_{i=1}^{n} h(x_i)^{1/n + \sum_{j} \lambda_j g_j(x_i) - 1}$$
(3)

which stands for the probability density function (pdf) of the Dirichlet distribution $Dir(1/n + \sum_j \lambda_j g_j(x_1), \ldots)$. Clearly, the parameters of determined distribution depend on Lagrange multipliers $\lambda_1, \ldots, \lambda_n$. Next step consists of their computation.

Insert computed distribution into constraints

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimization task

Solution

Computation of Lagr. multipliers Insert the determined pdf (3) into the constraints (2), for jth constraint it looks as follows:

$$E_{\hat{\pi}(h_{1:n}|D)}[KL(g_j|h_{1:n})|D] =$$

$$\int_{H} \frac{\Gamma(1 + \sum_{j} \lambda_j)}{\prod_{i=1}^{n} \Gamma(1/n + \sum_{j} \lambda_j g_j(x_i))} \prod_{i=1}^{n} h(x_i)^{1/n + \sum_{j} \lambda_j g_j(x_i) - 1}$$

$$\times \left(\sum_{l=1}^{n} g_j(x_l) \log \frac{g_j(x_l)}{h(x_l)}\right) dh(x_1) \dots dh(x_n)$$
(4)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Compute the expectations

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimization task

Solution

Computation of Lagr. multipliers 2. After reformulation we get that (4) equals (for a particular constraint):

$$-H(g_j)+\sum_{l=1}^n g_j(x_l)\left(\psi(1+\sum_j\lambda_j)-\psi(1/n+\sum_j\lambda_jg_j(x_l))
ight)$$

where H(.) stands for the entropy.

Discussion regarding the optimization task based on constrained minimum cross entropy

Vladimíra Sečkárová

Optimization task

Solution

Computation of Lagr. multipliers

Compute λ 's

- For computation of Lagr. multipliers λ_1, \ldots we use Nelder Mead method.
- Aim: minimize the objective function in the multidimensional space.
- Nelder Mead method: approximates the local optimum by extrapolating the behavior of the objective function by using the concept of simplex.
- Our objective function:

$$\sum_{j=1}^{s} \mathrm{E}_{\hat{\pi}(h_{1:n}|D)}[\mathrm{KL}(g_{j}|h_{1:n})|D]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• *n*-simplex: n-dimensional polytope which is the convex hull of its n + 1 vertices.

Available tools

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimizatior task

Solution

Computation of Lagr. multipliers

Available tools:

Nelder Mead program (by Jeff Borggaard): The user set the initial *n*-simplex and let the method compute the rest. Or

Use the Matlab function where the user set just one initial point, the method computes the rest.

Results

Discussion regarding the optimization task based on constrained minimum cross entropy

> Vladimíra Sečkárová

Optimizatior task

Solution

Computation of Lagr. multipliers

- Nelder Mead with full initial *n*-simplex set by user: results differ in the 3rd decimal place.
 - Q: How to set the initial set of points?
- Matlab Nelder Mead (one initial point): result is reasonable.

Q: Is the initial point $(\lambda_1, \ldots, \lambda_s) = (0, \ldots, 0)$ optional?