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Abstract— We consider an important class of dynamic single-
input single-output nonlinear systems where the system model
is polynomial in observations but linear in parameters. The
investigation is done in the errors-in-variables framework, i.e.
both input and output are observed with noise. Assuming
white Gaussian measurement noise that is characterized by a
magnitude and a covariance structure, we propose a nonlinear
extension to the generalized Koopmans–Levin method that
can estimate parameters of dynamic nonlinear systems with
polynomial nonlinearities given a priori knowledge on the noise
covariance structure. In order to estimate noise structure, we
apply a covariance matching objective function. Combining
the extended Koopmans–Levin and the covariance matching
approaches, an identification algorithm to estimate both model
and noise parameters is proposed. The feasibility of the ap-
proach is demonstrated by Monte-Carlo simulations.

Keywords—dynamic system identification; linearizable non-
linear systems; polynomial eigenvalue problem; covariance
matching

I. INTRODUCTION

Errors-in-variables systems where all variables are equally
observed with noise are of particular significance in applica-
tions where the quantitative description of the internal laws
constituting the system is of interest rather than predicting
future behavior. Such applications include computer vision,
image reconstruction, speech and audio processing, signal
processing, modal and spectral analysis, system identifica-
tion, econometrics and time series analysis. In these applica-
tions, the task is to construct a best possible system model
based on noisy observations. A general system model takes
the form

f (θ, z0,i) = 0

where the vector z0,i denotes (noise-free) data for ∀i =
1, . . . , N , N being the number of observations, the vector
θ encapsulates the parameters of interest, and f represents
some constraint between (for dynamic systems, past and
present) data. A usual assumption that is satisfied in most
applications is that the constraint f is linear in θ, i.e.

θ>g (z0,i) = 0 (1)

where g is a linearization of f . Given that z0,i are not directly
observable but contaminated with noise, the most common
assumption being Gaussian white noise, hence the actual
observations zi satisfy zi = z0,i + z̃i, the objective is to
derive estimates for θ given the noisy observations zi.
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Fig. 1. The basic setup for a linearizable discrete-time dynamic errors-in-
variables system. The function g relates current output and a finite number
of past inputs and outputs.

For the special case of identifying linear errors-in-variables
systems, where the constraint f is linear not only in θ but
also in data z0,i, a number of estimation schemes have been
proposed. For dynamic single-input single-output (SISO)
systems, where the system is described by the linear equation

y0,i + a1y0,i−1 + a2y0,i−2 + . . .+ amy0,i−m =
= b1u0,i−1 + b2u0,i−2 + . . .+ bnu0,k−m

or more compactly,

A(q−1)y0,i = B(q−1)u0,i

where the polynomial variable q−1 denotes the backward
shift operator ◦iq−1 = ◦i−1 (in which ◦ is a generic
placeholder for a parameter) but neither the noise-free true
input u0,i nor the true output y0,i is observable but one is
confined to their noise-contaminated variants u and y, pro-
posed methods include bias-compensating least squares [3],
the Frisch scheme [2], instrumental variable [9], higher-order
statistics [10], structured total least squares [7], frequency-
domain and efficient maximum likelihood methods, see [8]
for a comprehensive survey.

This paper deals with a nonlinear extension of the general-
ized Koopmans–Levin method to estimate model parameters
of a dynamic system with given noise structure where the
linearization g in (1) is a polynomial in terms of input
and output data (Figure 1), and a subsequent covariance
matching objective function to estimate noise covariance
structure. The Koopmans–Levin method, proposed in [6],
gives a non-iterative quick estimate of the model param-
eters of a linear system given a priori information on the
noise structure. The original method was generalized in [11]
to improve estimation accuracy at the cost of increased
computational complexity, incorporating as special cases
the original Koopmans–Levin method and the maximum
likelihood method. In addition, a nonlinear extension to the



original Koopmans method was proposed in [12] for static
systems.

The Koopmans–Levin method and its generalization are
briefly described in Section II. Section III combines and
extends the results of [11] and [12] to nonlinear dynamic
systems that comprise of polynomial nonlinearities yet are
linear in model parameters. The outlined method assumes a
preliminarily known noise structure, Section IV extends the
estimation method so that no such assumptions are required.
In order to demonstrate the feasibility of the method, some
simulation results are presented in Section V before the paper
concludes with Section VI.

II. THE GENERALIZED KOOPMANS–LEVIN METHOD

Consider the linear SISO errors-in-variables system
G(q−1) described by the autoregressive moving average
(ARMA) difference equation

A(q−1)y0,i = B(q−1)u0,i (2)

with

A(q−1) = a0 + a1q
−1 + · · ·+ amq

−m

B(q−1) = b0 + b1q
−1 + · · ·+ bmq

−m.

Given the aforementioned system description, we may intro-
duce the model parameter vector θ and the extended regressor
vector z

θ> =
[
a0 a1 . . . am −b0 −b1 . . . −bm

]
z>i =

[
yi . . . yi−m ui . . . ui−m

]
such that θ>z0,i = 0 ∀i = m + 1 . . . N with m being the
order of the model and z̃i = zi−z0,i is the noise contribution
following a normal distribution such that ỹi ∼ N(0, σ2

y)
and ũi ∼ N(0, σ2

u). Notice that the system is linear in
components y0,i and u0,i as well as in model parameters
ak and bk with 0 5 k 5 m. Furthermore, introduce the
observation sample and noise covariance matrices as

D = E
(
zz>

)
≈

1
N

N∑
i=1

ziz
>
i

µC = E
(
z̃z̃>

)
≈

1
N

N∑
i=1

z̃iz̃
>
i

with µ denoting noise magnitude and C representing a
normalized noise covariance matrix, or noise (covariance)
structure, which is a diagonal matrix due to our assumptions
on noise. We assume that the input signal u0 is an excitation
of sufficient order to make identification possible.

The essence of the Koopmans–Levin method is that the
(full-rank) sample covariance matrix D comprising of (noisy)
observations can be decomposed into a (rank-deficient)
noise-free component D0 and a noise component C:

θ>Dθ = θ>D0θ + θ>µCθ = θ>µCθ

in which θ>Dθ = θ>E
(
zz>

)
θ = E

(
θ>zz>θ

)
and

θ>D0θ = θ>E
(
z0z
>
0

)
θ = 0 so that finding θ entails

minimizing the objective function

J =
1
2
θ>Dθ

θ>Cθ
(3)

with ‖θ‖ = 1, which can be effectively tackled by solving
the eigenvector decomposition problem

(D − µC) θ = 0

or
det (D0) = det (D − µC) = 0

so that the model parameter vector is found by solving a
generalized eigenvector problem on the matrix pair (D, C).
The problem may alternatively be formulated using matrix
notation where

Z =

 y1 · · · ym u1 · · · um
y2 · · · ym+1 u2 · · · um+1

...
...

...
...


D = Z>Z

µC = diag
[
σ2
y · · · σ2

y σ2
u · · · σ2

u

]
with Z being an (N − m + 1) × 2m matrix and C =
µCρ ⊗ Im denoting the noise structure such that the noise
covariance matrix is known up to a multiplication by a scalar
µ representing the noise magnitude, i.e.

µCρ = µ

[
sin2 ρ 0

0 cos2 ρ

]
=
[
σ2
y 0

0 σ2
u

]
(4)

in which we assume that the noise structure matrix Cρ
(uniquely determined by the noise direction ρ that reflects the
relative distribution of input vs. output noise) is preliminarily
known.

The variance of the estimates thus obtained, however, is
rather large. One way [11] to improve the robustness of the
parameter estimation approach outlined above is by instead
of (3) minimizing the objective function

J =
1
2

1
q −m

trace
(
G>q Z

>
q

(
G>q CqGq

)−1
ZqGq

)
where Zq is an (N − q + 1) × 2q matrix obtained by
augmenting Z with q−m columns of additional observations
for both y and u; Gq is a 2q × (q − m) matrix of model
parameters such that Z0,qGq = 0; and Cq = (µCρ) ⊗ Iq
is a diagonal covariance structure matrix of size 2q, and
m+ 1 5 q 5 N ; i.e.

G◦ =



◦0
◦1 ◦0
... ◦1

◦m
...

. . . ◦0
◦m ◦1

. . .
...
◦m


q, q−m

Gq =
[

Gy
−Gu

]
2q, q−m



Zq =


y1 · · · yq u1 · · · uq
y2 · · · yq+1 u2 · · · uq+1

...
...

...
...

yN−q+1 · · · yN uN−q+1 · · · uN

 .
In short, both the model parameter vector θ and the original
observation matrix Z have been extended from size m to q.

The above problem can be reformulated as

J =
1

2(q −m)
trace

((
G>q CqGq

)−1
G>q DqGq

)
(5)

which can be gradually approximated with the iteration
scheme

trace
((
G>q (θk)CqGq(θk)

)−1
G>q (θ)DqGq(θ)

)
trace

((
G>q (θk)CqGq(θk)

)−1
G>q (θ)CqGq(θ)

) (6)

where θk+1 = arg minθ(6) and k stands for the iteration
count, which yields the same extreme value upon conver-
gence. To facilitate easier computation, the above scheme is
equivalent to

θk+1 = arg min
θ

θ>T>
((
G>q (θk)CqGq(θk)

)−1 ⊗Dq
)
Tθ

θ>T>
((
G>q (θk)CqGq(θk)

)−1 ⊗ Cq
)
Tθ

(7)

where T (a sparse matrix of zeros and ones) is chosen such
that vec(Gq) = Tθ. In each iteration, minimization w.r.t. θ is
attained by solving a generalized eigenvector decomposition
problem on the matrix pair (Q, R) with

Q = T>
((
G>q (θk)CqGq(θk)

)−1 ⊗Dq

)
T

R = T>
((
G>q (θk)CqGq(θk)

)−1 ⊗ Cq
)
T

where θ is the eigenvector that belongs to the smallest
eigenvalue µ.

III. A NONLINEAR EXTENSION

In order to further generalize the Koopmans–Levin method
to nonlinear systems, linear components yi and ui give way
to the nonlinearities that occur in the model. For instance,
for the components yi, ui, u2

i and yiui, the (N−q+1)×nq
matrix Zq takes the form

Zq =

 y1 · · · yq u1 · · · uq
y2 · · · yq+1 u2 · · · uq+1

...
...

...
...

u2
1 · · · u2

q y1u1 · · · yquq
u2

2 · · · u2
q+1 y2u2 · · · yq+1uq+1

...
...

...
...


and the general form for the matrix Gq becomes

Gq =


G1

G2

...
Gn


nq, q−m

n being the number of nonlinear components (in our case,
n = 4) and Gk encapsulating the parameters for the respec-
tive nonlinearity, 0 < k 5 n. Notice that the matrix product
ZqGq entails that the system is still linear in parameters.
However, the covariance matrix structure Cq is no longer a
single diagonal matrix but is replaced by a matrix polynomial

Cq(µ) = µC(1)
q + µ2C(2)

q + . . .+ µpC(p)
q

in which C(k)
q is the kth coefficient of the matrix polynomial

Cq(µ). One can use the following identities in deriving
Cq(µ):

E (xpi ) = E (x0,i + ni)
p

E
(
n2p
i

)
= (2p− 1)(2p− 3) . . . 1σ2p

E
(
n2p−1
i

)
= 0

E (xi) ≈ x̄ =
1
N

N∑
i=1

xi

E (xixi−τ ) = E (xi) E (xi−τ )

in which ni is a zero-mean σ2-variance normally distributed
random value at time instant i. [12] features a detailed
description as well as an introductory example on how to
derive these terms. Figure 2 shows a sample covariance
polynomial for q = 2. Observe that the matrix entries usually
depend not only on noise parameters σu and σy but also on
(means of) the observations themselves.

The use of covariance matrix polynomials instead of reg-
ular covariance matrices necessitates some modifications to
the objective function (5) as well as the iteration scheme (7).
By including the noise magnitude within the trace operator
in (5) yielding

trace
((
G>q µCqGq

)−1
G>q DqGq

)
,

it is apparent that the matrix product approaches the unit
matrix should the best possible model parameters and noise
covariance matrix be used. In this spirit, (5) can be reformu-
lated as

J =
(

trace
((
G>q µCqGq

)−1
G>q DqGq

)
− (q −m)

)2

(8)

with m being the the order of the dynamic model to estimate
where the minimum of J is attained when both model and
noise magnitude estimates best match observations. Substi-
tuting the noise covariance polynomial Cq(µ) into (8), we get
a parameter estimation scheme for nonlinear systems. Thus,
we propose the following differentiable objective function:

J =
(
trace

(
γ−1δ

)
− (q −m)

)2
(9)

where

δ = G>q (θ)DqGq(θ)

γ = G>q (θ)Cq(µ)Gq(θ)

As the function (9) is differentiable, a direct search utilizing
the Levenberg-Marquardt method yields model parameter



C(µ) =

µ



σ2
y 0 0 0 ȳσ2

u ȳσ2
u ūσ2

y 0
0 σ2

y 0 0 ȳσ2
u ȳσ2

u 0 ūσ2
y

0 0 σ2
u 0 3ūσ2

u ūσ2
u ȳσ2

u 0
0 0 0 σ2

u ūσ2
u 3ūσ2

u 0 ȳσ2
u

ȳσ2
u ȳσ2

u 3ūσ2
u ūσ2

u 6σ2
uū

2 2σ2
uū

2 3ȳūσ2
u ȳūσ2

u

ȳσ2
u ȳσ2

u ūσ2
u 3ūσ2

u 2σ2
uū

2 6σ2
uū

2 ȳūσ2
u 3ȳūσ2

u

ūσ2
y 0 ȳσ2

u 0 3ȳūσ2
u ȳūσ2

u ȳ2σ2
u + σ2

yū
2 0

0 ūσ2
y 0 ȳσ2

u ȳūσ2
u 3ȳūσ2

u 0 ȳ2σ2
u + σ2

yū
2


− µ2



· · · 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3σ4
u σ4

u 0 0
σ4
u 3σ4

u 0 0
0 0 σ2

yσ
2
u 0

· · · 0 0 0 σ2
yσ

2
u


Fig. 2. Example covariance matrix for the polynomial components yi, ui, u2

i and yiui with q = 2. Entries not indicated take a value of zero.

and noise magnitude estimates. However, the Levenberg-
Marquardt method finds a single local minimum in a single
run, making the scheme sensitive to initial values.

Iterative schemes based on matrix decomposition are more
robust against getting stuck in local minima as they deliver
multiple local minima in a single iteration. Modifying (7) to
incorporate the covariance polynomial Cq(µ) we get

θ̄k+1 = arg min
θ̄

θ>T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗Dq
)
Tθ

θ>T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗ Cq(µ)
)
Tθ

(10)
with θ̄ =

[
θ µ

]
and ‖θ‖ = 1 needs the solution of a

polynomial eigenvalue decomposition problem

Ψ(µ)θ =
(
Q− µR1 − µ2R2 − . . .− µpRp

)
θ = 0 (11)

with

Q = T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗Dq

)
T

Ri = T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗ C(i)
q

)
T

Further reduction in the computational space is possible if
a priori knowledge of the equality of certain parameters is
available. Introducing the structural constraint matrix S with
0 and 1 entries such that Sθ = θR, it is possible to augment
the above equations to yield

Q = S>T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗Dq

)
TS

Ri = S>T>
((
G>q (θk)Cq(µk)Gq(θk)

)−1 ⊗ C(i)
q

)
TS

and restrict the search for parameter estimates in θR with
dim θR < dim θ.

One way to solve a polynomial eigenvector decomposition
problem is by linearization. As a result of linearization,
the polynomial eigenvalue problem reduces to a general-
ized eigenvalue problem. In particular, (11), when subject
to symmetry-preserving linearization ψ(µ) [1] becomes for
even p

ψ(µ) = diag
([

0 I
I R1

]
,

[
0 I
I R3

]
, . . . ,

[
0 I
I Rp−1

])
−µdiag

(
Q−1,

[
−R2 I
I 0

]
, . . . ,

[
−Rp−2 I
I 0

]
,−Rp

)
and for odd p

ψ(µ) = diag
(
Q,

[
0 I
I R2

]
,

[
0 I
I R4

]
, . . .

)

−µdiag
([
−R1 I
I 0

]
,

[
−R3 I
I 0

]
, . . . ,−Rp

)
.

As the linearized problem has eigenvectors of dimension mp
rather than m, the “best” polynomial eigenvector that belongs
to the eigenvalue µ becomes the portion vk of the linearized
eigenvector ψ(µ)x = 0 that gives the smallest normalized
residual, i.e.

vk = arg min
vk

∑
k |(Ψ(µ)v)k|∑

k |vk|
.

With the iterative scheme (10) at hand, a few initial
iterations can be used to seed the Levenberg-Marquardt
search with appropriate initial values reducing the likelihood
of (9) getting stuck in a local minimum.

IV. MODEL AND NOISE ESTIMATION

Contrary to the hidden assumption in the previous section,
in a real-world scenario, the true noise structure Cρ (or
equivalently, a noise direction ρ that determines the ratio of
input and output noise variances for a unit magnitude noise)
is seldom at our disposal. As the final step of the parameter
estimation method, we propose means to estimate Cρ for
white noise.

One way to parametrize noise variances, as in (4), is by
writing σ2

u = µ cos2 ρ and σ2
y = µ sin2 ρ such that Cq =

Cq(µ, ρ). Let θ̂ denote (unit-normalized) estimates obtained
with a particular assumption of ρ using (10). Introduce the
notations

δ̂ = G>q (θ̂)DqGq(θ̂)

γ̂ = G>q (θ̂)Cq(µ̂, ρ)Gq(θ̂)

Varying ρ in the range from 0 to π
2 , one can discover the

“true” value by minimizing the loss function

J(ρ) =
∥∥∥δ̂ − γ̂∥∥∥

F
(12)

where ‖·‖F denotes the Frobenius norm (a technique called
covariance matching in [13]) or the “inverted” loss function

J(ρ) = trace
(
δ̂−1γ̂

)
(13)

or the so-called Itakura–Saito matrix divergence

J(ρ) = trace(γδ−1)− log(det(γδ−1))− n (14)

where n is the dimension of the square matrices involved.
The minimum value for J in the above equations yields the
estimated value for ρ.



As an alternative to the two-stage estimation procedure
outlined above, a single-stage strategy might theoretically
also be employed. Let

δ = G>q (θ)DqGq(θ)

γ = G>q (θ)Cq(µ, ρ)Gq(θ)

and introduce the objective functions

J1 =
(
trace

(
γ−1δ

)
− (q −m)

)2
J2 =

(
trace

(
δ−1γ

)
− (q −m)

)2
J3 = ‖δ − γ‖2F = trace

{
(δ − γ)> (δ − γ)

}
Notice that all are functions of θ, µ as well as ρ simulta-
neously. Due to their nonlinearity, they are likely to exhibit
convergence to local minima if started with the wrong initial
values.

V. SIMULATION RESULTS

As an introductory example, consider the nonlinear
Mackey–Glass chaotic process that models white blood cell
production. The process is described by the following state
equation

x0,i+1 = −ax0,i +
bx0,i−τ

1 + xp0,i−τ
(15)

where there exists no external excitation,

x0,i = a if 0 5 i 5 τ

a = 0.9 b = 0.2 τ = 17 p = 10

The relationship (15) given in explicit form can be reformu-
lated in implicit form

x0,i+1x
p
0,i−τ + ax0,ix

p
0,i−τ +

x0,i+1 + ax0,i − bx0,i−τ = 0

A sequence of N = 1000 data are observed with a noise
of σ2 = 0.05. Notice the equality constraint on certain pa-
rameter coefficients expressible with the structural constraint
matrix

S =

 1 0 1 0 0
0 1 0 1 0
0 0 0 0 1


with the original model parameter vector θ (without repeated
coefficients) relating to the extended vector θ̄ (with repeated
coefficients) via Sθ̄ = θ. As a result of a simulation with
M = 100 runs, â = 0.9147 ± 0.0124 and b̂ = −0.1653 ±
0.0334, that reproduce the original process fairly accurately.

Let us now draw our attention to an artificial yet relatively
complex process described by the nonlinear relationship

y0,i = p1y0,i−1 + p2y0,i−2 + p3u0,i−1 +
+ p4u

2
0,i−1 + p5y0,i−1y0,i−2

+ p6u0,i−1y0,i−1
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Fig. 3. Discovering noise direction by successive estimation over an
angle range (continuous: Frobenius (12); dashed: Itakura–Saito (14) distance
measure).

comprising of both linear and polynomial terms as well as
cross-correlating terms. The true parameter values are set to

p1 = 1.5 p2 = −0.7 p3 = 1
p4 = −0.3 p5 = −0.05 p6 = 0.1

and a configuration of N = 500 samples, q = 6, σu = 0.01
and σy = 0.01 is set up.1 Next, a Monte-Carlo simulation
of M = 100 runs of the outlined nonlinear extension to
the generalized Koopmans–Levin method has been carried
out with a known noise structure. Table I analyzes the
consistency of the estimation scheme.

Figure 3 shows how to discover noise covariance structure
(i.e. the noise “direction” ρ) by minimizing the distance or
divergence measures (12) and (13) over an interval to arrive
at estimates for all parameters. In accordance, a different
series of Monte-Carlo experiments have been conducted, in
which for each independent simulation run a noise structure
discovery step shown in Figure 3 has been carried out, with
model parameters and noise magnitude estimated for each
potential value of ρ, and the distance measure evaluated.
The comprehensive results, in which all model and noise
parameters are estimated, are shown in Table II.

For the sake of comparison, an instrumental variable
scheme, based on the bias-compensating least-squares tech-
nique for nonlinear polynomial systems (NBCLS) has been
included in the table. The scheme minimizes the objective
function [5]

J =
∥∥dIV − cIV − (DIV − CIV )θ̄

∥∥ (16)

where
θ̄ = (DIV − CIV )†(dIV − cIV )

with DIV and dIV being the (rectangular) covariance matri-
ces of the regressor vector and the output vector, respectively,
w.r.t. so-called instruments and CIV (µ, ρ) and cIV (µ, ρ)

1Simulation examples are available as part of [4].



nonlinearity true value N = 500 N = 1000 N = 2000

ŷ0,i−1 -1.5 -1.5001 ± 0.0039 -1.4998 ± 0.0030 -1.5000 ± 0.0020
ŷ0,i−2 0.7 0.7001 ± 0.0034 0.6998 ± 0.0024 0.7001 ± 0.0014
û0,i−1 -1.0 -1.0009 ± 0.0197 -1.0008 ± 0.0135 -1.0001 ± 0.0093
û2

0,i−1 0.3 0.3256 ± 0.1066 0.2919 ± 0.0649 0.3004 ± 0.0537
ŷ0,i−1ŷ0,i−2 0.05 0.0502 ± 0.0137 0.0500 ± 0.0077 0.0497 ± 0.0051
û0,i−1ŷ0,i−1 -0.1 -0.0986 ± 0.0413 -0.0988 ± 0.0259 -0.0992 ± 0.0172
µ · 10−3 0.2 0.1958 ± 0.0118 0.1978 ± 0.0086 0.1982 ± 0.0067

TABLE I
CONSISTENCY ANALYSIS OF PARAMETER ESTIMATES WITH q = 6 AND KNOWN NOISE STRUCTURE.

nonlinearity NBCLS (16) Frobenius norm (12) “inverted” (13) Itakura–Saito (14)
ŷ0,i−1 -1.4996 ± 0.0045 -1.5002 ± 0.0039 -1.4997 ± 0.0044 -1.4998 ± 0.0036
ŷ0,i−2 0.6998 ± 0.0038 0.7002 ± 0.0032 0.6997 ± 0.0035 0.7000 ± 0.0028
û0,i−1 -1.0015 ± 0.0096 -0.9998 ± 0.0182 -1.0021 ± 0.0221 -0.9980 ± 0.0198
û2

0,i−1 0.3258 ± 0.3173 0.3101 ± 0.0953 0.2928 ± 0.1053 0.3004 ± 0.0898
ŷ0,i−1ŷ0,i−2 0.0500 ± 0.0040 0.0492 ± 0.0114 0.0496 ± 0.0104 0.0505 ± 0.0102
û0,i−1ŷ0,i−1 -0.1058 ± 0.0477 -0.1048 ± 0.0391 -0.1017 ± 0.0309 -0.1010 ± 0.0338
σ2
y

[
10−3

]
0.0984 ± 0.0153 0.1017 ± 0.0131 0.0999 ± 0.0099 0.1011 ± 0.0102

σ2
u

[
10−3

]
0.1021 ± 0.0406 0.0915 ± 0.0138 0.0944 ± 0.0126 0.0911 ± 0.0102

TABLE II
SIMULATION RESULTS WITH UNKNOWN NOISE STRUCTURE AND VARIOUS METHODS TO MATCH COVARIANCE MATRICES.

being the corresponding computed (rectangular) noise co-
variance matrices. Instruments include the regressor vector
as well as past observations not in the system model. The
notation M† stands for the Moore-Penrose pseudoinverse(
M>M

)−1
M>.

Even though the proposed method exhibits somewhat but
not substantially larger variance for some parameters, NBCLS
produces strikingly high variance for parameters û2

0,i−1,
û0,i−1ŷ0,i−1 and σ2

u, making estimates for these parameters
of little use.

VI. CONCLUSION

After a brief description of the Koopmans–Levin method
and its generalization for linear systems, we introduced a
nonlinear extension by modifying the objective function and
the iteration scheme of the linear generalization. As a result,
the original dependency on the model parameters θ has
been extended with dependency on the noise magnitude µ.
Consequently, the iterative problem is tackled efficiently by
solving a polynomial rather than a generalized eigenvalue
problem. Next, an optimization scheme of minimizing an
error term over an angle range has been shown to give a noise
structure estimate thus yielding estimates for all model and
noise parameters. Finally, objective functions that encompass
all model and noise parameters have been proposed, which
can be fed to direct search methods to produce parameter
estimates.
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