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Abstract— This paper deals with quantitative data fusion
for linear stochastic dynamic systems. The stress is laid on
the Millman’s formula which is utilised for combining state
estimates that are based on different data sets. Various filtering
and smoothing problems are introduced and solved by using
the same fusion principle. The optimal centralised multisensor
filtering is compared with other filtering architectures by means
of a numerical example.

I. INTRODUCTION

The data fusion problem arises when there are multiple
sources of data. This problem can be viewed quantitatively
or qualitatively. The main tools of quantitative data fusion
are statistics and probability theory. The qualitative point
of view uses higher levels of abstraction. While the former
approach deals with the object state represented by a vector
of real numbers, which meaning can be e.g. object position
and velocity, the latter uses symbols. Object types, relations
among objects or more abstract inferences are the goals of
qualitative data fusion.

There are several models of the data fusion process [1].
The most widely used is the JDL Data Fusion Model. It is
a functional model which distinguishes several levels in the
fusion process. The level 1 (Object Assessment) deals with
objects and object states, the qualitative fusion is frequently
used there, levels 2 and 3 (Situation and Impact Assess-
ment) deals with quantitative fusion mainly. The artificial
intelligence is the tool used within these levels. Level 4
is a metaprocess that optimises overall fusion performance.
The levels are not organised hierarchically but they are bus-
connected. The JDL model is only functional, the data fusion
algorithms can combine more levels simultaneously.

Many areas of research exist. A general problem is the
representation of uncertainty and handling it. Different ap-
proaches are suitable for each fusion level. The probability
theory with Bayesian rule, fuzzy set theory or Dempster-
Shafer theory serve as examples. More particular problems
are multi-sensor multi-target tracking, condition-time mon-
itoring, image fusion and classification or expert system
design. In [2] a good overview of general data fusion
approaches and techniques is given. The target tracking,
which is the main qualitative fusion problem, can be found
in [3].

Though fusion problems exists in one-sensor system,
the crucial problems relate to multisensor systems. The
term one-sensor system is usually understood as a sys-
tem with only one estimator, not as a system with only
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one scalar measurement. The multisensor problems are di-
vided into measurement-to-measurement, measurement-to-
track and track-to-track fusion problems where the notation
”track” comes from target-tracking domain and is equal to
the notation ”state estimate”. This partition is closely coupled
with the fusion architecture which can be centralised, hierar-
chical, decentralised or mixed. The connections among local
estimators, presence of a central estimator, communicated
data types, i.e. measurements or estimates, communication
rates and other properties define the fusion architecture.

The centralised architecture consists of one central pro-
cessor which processes all measurements, no estimates are
communicated. It corresponds to the standard problem for-
mulation. In the hierarchical architecture, upper level esti-
mators fuse estimates coming from lower level estimators,
measurements are communicated to the lowest level esti-
mators only, the communication structure is a tree. Bar-
Shalom formula [4] can be used to fuse the estimates.
The decentralised architecture does not have any top level
estimator and there are not structure demands. For tree
connected estimators the channel filters [5] can be used. The
channel filters keep all information that is communicated
between two correspondent nodes to prevent double counting
of information. Other possible solution to the decentralised
fusion problem is to use some upper bounds when fusing
two estimates. This can be done by using the Covariance
Intersection algorithm [6].

This paper deals with the quantitative data fusion. Mea-
surements are generated by linear stochastic systems and
prior information concerning the state of the system is
available. Single state estimates are obtained from the mea-
surements sets and from the prior information. The goal of
the data fusion is to find an overall estimate that combines
the single estimates according to the fusion architecture. A
common fusion technique can be found for various smooth-
ing and filtering problems.

This paper is a simulation study that compares various
applications of the Millman’s formula (MF) in fusion and
estimation problems. The stress is laid on an alternative view
on current estimation techniques as well.

The paper is organised as follows. The generalised Mill-
man’s formula is described in Section 2, a multisensor
system is defined in Section 3. In Section 4, the use of the
basic MF in the filtering and smoothing problems is shown.
Multisensor fusion and hierarchical filtering which use the
generalised Millman’s formula are described in Section 5. A
comparative example is performed in Section 6. Section 7
contains concluding remarks.



II. GENERALISED MILLMAN’S FORMULA

The Generalised Millman’s Formula (GMF) is a tool for
combination of two or more correlated and uncorrelated local
estimates [7].

Let N local estimates of the vector x ∈ Rnx be supposed,
i.e. x̂i, i = 1,2 . . . ,N, where Rnx is nx-dimensional Euclidean
space. With the estimates, the covariance matrices of estima-
tion error

Pi j = cov(x̃i, x̃ j) (1)

are associated, where x̃i = x− x̂i, and i, j = 1, . . . ,N.
The aim is to find the overall optimal linear estimate of x

of the form

x̂ =
N

∑
i=1

cix̂i, (2)

N

∑
i=1

ci = Inx , (3)

where ci is the i-th nx×nx constant weighting matrix and Inx

is the identity matrix of size nx. The overall error covariance
matrix P = cov(x− x̂) is given by

P =
N

∑
i=1

N

∑
j=1

ciPi jcT
j . (4)

The GMF allows to find the weighting matrices ci by
minimisation of the following mean square error criterion

J (c1,c2, . . . ,cN) = E

∥∥∥∥∥x−
N

∑
i=1

cix̂i

∥∥∥∥∥
2
 , (5)

which leads to the linear equations

N−1

∑
i=1

ci (Pi j −PiN)+ cN (PN j −PNN) = 0 (6)

N

∑
i=1

ci = Inx , (7)

where j = 1,2, . . . ,N −1 [7].
Relations (2), (4), (6), and (7) represent the generalised

Millman’s formula for N > 2 local estimates x̂i. Note that
further discussion concerning generalised Millman’s formula
can be found in [7].

In the particular case with N = 2 the generalised Millman’s
formula can be written in closed form as

• the Bar-Shalom-Campo formula for the optimal combi-
nation of two correlated estimates [8]

x̂ = x̂1 +(P11 −P12)(P11 +P22 −P12 −P21)−1×
× (x̂2 − x̂1) = (P22 −P21)(P11 +P22 −P12 −P21)−1×
× x̂1 +(P11 −P12)(P11 +P22 −P12 −P21)−1x̂2 =
= c1x̂1 + c2x̂2, (8)

P = c1P11cT
1 + c1P12cT

2 + c2P21cT
1 + c2P22cT

2 =

= P11 − (P11 −P12)(P11 +P22 −P12 −P21)−1×
× (P11 −P21), (9)

where c1 = (P22 − P21)(P11 + P22 − P12 − P21)−1 and
c2 = (P11 −P12)(P11 +P22 −P12 −P21)−1, and

• the Millman’s formula for the optimal combination of
two uncorrelated estimates, i.e. with P12 = P21 = 0, [9]

x̂ = P22(P11 +P22)−1x̂1 +P11(P11 +P22)−1x̂2 =
= c1x̂1 + c2x̂2, (10)

P = c1P11cT
1 + c2P22cT

2 = P11(P11 +P22)−1P22, (11)

where c1 = P22(P11 + P22)−1 and c2 = P11(P11 +
P22)−1.

Utilisation of the generalised Millman’s formula and its
particular cases in the state estimation will be discussed in
the following sections.

III. SYSTEM DEFINITION AND STATE ESTIMATION

Let the linear discrete-time stochastic system be described
by equations

xk+1 = Fxk +Gwk, (12)

z( j)
k = H( j)xk +v( j)

k , (13)

where F∈Rnx×nx , H( j) ∈Rnz×nx , and G∈Rnx×nw are known
matrices, xk ∈ Rnx is the immeasurable system state, z( j)

k ∈
Rnz is the measurement coming from j-th sensor, k = 0,1, . . .
is a time index, and j = 1, . . . ,S is the sensor number. The
variables wk ∈ Rnw and v( j)

k ∈ Rnz are the state and mea-
surement Gaussian noises with zero mean and with known
covariance matrices Q, R( j), respectively. Both noises are
mutually independent and independent of the system initial
state described by the Gaussian pdf p(x0) = N {x0 : x̄0,P0}.
Note that the processes {v( j)

k } need not to be mutually
independent.

The aim of the state estimation is to find an estimate of
the system state xk providing that measurements lz are given,
lz = [z0,z1, . . . ,zl ]. The estimate is usually in the form of the
conditional probability density function p(xk|lz) or at least
in the form of two conditional moments, the mean x̂k|l =
E(xk|lz) and the covariance matrix Pk|l = cov(xk|lz). The
general solution to the estimation problem is then given by
the functional recursive relations known for the prediction
(k > l), the filtering (k = l), and the smoothing (k < l) [9].

Note that the recursive relations can be exactly solved for
the linear Gaussian system (12) and (13).

IV. MILLMAN’S FORMULA IN FILTERING AND
SMOOTHING

This section deals with the utilisation of the Millman’s
formula in filtering and smoothing. For the sake of simplicity,
the system (12), (13) with one sensor is supposed, i.e. S = 1.

A. Millman’s formula in filtering

The simplest use of the MF could be found by analysing
the Kalman filter (KF) [9].

The measurement update (filtering) equation of the KF

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1), (14)



where Kk is the Kalman gain, can be interpreted as a fusion
of two estimates, namely

• the prior information x̂k|k−1, i.e. predictive estimate of
the state xk using measurements k−1z, with covariance
matrix Pk|k−1 and

• the maximum likelihood (ML) state estimate x̂ML
k

x̂ML
k = (HT R−1H)−1HT R−1zk (15)

with covariance matrix PML = (HT R−1H)−1, which is
based on the measurement zk only.

To show that, an alternative expression of update equation
(14) will be used [9]

x̂k|k = (Inx −KkH)x̂k|k−1 +Pk|kHT R−1zk, (16)

where the Kalman gain Kk and the posterior covariance
matrix Pk|k are given by

Kk = Pk|k−1HT (HPk|k−1HT +R)−1 = Pk|kHT R−1, (17)

Pk|k = (P−1
k|k−1 +HT R−1H)−1 = (Inx −KkH)Pk|k−1. (18)

With respect to the relation P−1
MLx̂ML

k = HT R−1zk and (18),
equation (16) can be written as

x̂k|k = Pk|kP−1
k|k−1x̂k|k−1 +Pk|kP−1

MLx̂ML
k . (19)

As the particular state estimates x̂k|k−1 and x̂ML
k are inde-

pendent, the posterior state estimate x̂k|k (19) can be written
in terms of Millman’s formula (10), i.e. as

x̂k|k = c1x̂1 + c2x̂2, (20)

where x̂1 = x̂k|k−1, x̂2 = x̂ML
k ,

c1 = P22(P11 +P22)−1 = (P−1
11 +P−1

22 )−1P−1
11 =

=
(

P−1
k|k−1 +(HT R−1H)

)−1
P−1

k|k−1 = Pk|kP−1
k|k−1, (21)

c2 = P11(P11 +P22)−1 = (P−1
11 +P−1

22 )−1P−1
22 =

=
(

P−1
k|k−1 +(HT R−1H)

)−1
P−1

ML = Pk|kP−1
ML, (22)

in which P11 = Pk|k−1 and P22 = PML. It can be also seen
that the condition (3) is fulfilled

c1 + c2 = Pk|k(P−1
k|k−1 +P−1

ML) = Pk|kP−1
k|k = Inx . (23)

The posterior covariance matrix Pk|k can be written in terms
of Millman’s formula (11) as

Pk|k = c1P11cT
1 + c2P22cT

2 =

= (P−1
11 +P−1

22 )−1(P−1
11 +P−1

22 )(P−1
11 +P−1

22 )−1 =

= (P−1
k|k +P−1

ML)−1 = (P−1
k|k +HT R−1H)−1 (24)

From relations (20)–(24) it can be seen that the KF mea-
surement update equations (14) and (18) fits the MF (10)
and (11).
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Fig. 1. Centralised fusion

B. Millman’s formula in smoothing

In this part the use of the MF in the problem of smoothing
is discussed. The difference contrary to filtering is that there
are more data available. The filtering estimate with the
covariance Pk|k is gained by a standard forward KF. The
filtering estimate is smoothed by the data l

k+1z, where l > k
and l

k+1z = [zk+1, . . . ,zl ]. These data are processed by the
information filter which runs backward in time with zero
initial condition [9]. The backward estimate is equal to

x̂k|l = S−1
k|l ŷk|l , (25)

where Sk|l = P−1
k|l is the precision matrix and ŷk|l is the

information coming from the backward information filter.
To fuse x̂k|k and ŷk|l optimally in the mean square error

sense, the MF (10) and (11) can be used. The fusion
equations are then given as

Kk = Pk|kSk|l(Inx +Pk|kSk|l)
−1, (26)

Pk = (Inx −Kk)Pk|k, (27)

x̂k = (Inx −Kk)x̂k|k +Pkŷk|l . (28)

The smoothing problem formulation is different from that of
filtering problem but the solution is obtained by the same
means, the filtering theory and the MF.

V. GENERALISED MILLMAN’S FORMULA IN STATE
ESTIMATION

In this section, the system (12), (13) with multiple sensors,
i.e. S > 1, is supposed. The fusion of multiple estimates is
shown by using the Generalised Millman’s formula (6), (7)
for some special cases.

A. Optimal centralised fusion

To evaluate multisensor fusion performance, the cen-
tralised solution will be introduced. This solution is hypo-
thetical only because it supposes no constraints on the fusion
architecture, i.e. all measurements are available to the central
processor, see Fig. 1. The multisensor system is rewritten as
a one-sensor system by merging the measurement equations
(13) to one block-matrix equation

zk = Hxk +vk (29)

where
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Fig. 2. Multisensor fusion

zk =


z(1)

k

z(2)
k
...

z(S)
k

 , H =


H(1)

H(2)

...
H(S)

 , vk =


v(1)

k

v(2)
k
...

v(S)
k

 , (30)

with the measurement noise covariance matrix

R =


R(1) 0 · · · O

0 R(2) · · · 0
...

...
. . .

...
0 0 · · · R(S)

 . (31)

B. Multisensor fusion

The multisensor problem definition assumes that there are
multiple estimators which process their corresponding mea-
surements and possibly other state estimates. The simplest
fusion architecture consists of one central estimator which
fuses the local state estimates. The situation is depicted in
Fig. 2 where LKF denotes a local Kalman filter.

It is evident that this problem does not equal to the
centralised fusion. Now, the direct application of the MF for
the multisensor case will be shown. The system with multiple
sensors is considered, i.e. S > 1. Each sensor provides an
estimate x̂( j)

k|k with associated covariance matrix P( j)
k|k , j =

1, ...,S. If the process noise is sufficiently small, the local
estimates can be fused by the GMF as being independent.

For independent estimates, i.e. Pi j = 0 for i 6= j, the
solution to the eqs. (6), (7) of the GMF has a simple closed
form

ci =

(
N

∑
j=1

P−1
j j

)−1

P−1
ii . (32)

Applying (32) to (2), (4), the fused estimate x̂k|k for the
multisensor fusion is

x̂k|k = Pk|k

N

∑
j=1

P( j)
k|k

−1
x̂( j)

k|k , (33)
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Fig. 3. Hierarchical fusion

where the estimate covariance Pk|k is given by

P−1
k|k =

N

∑
j=1

P( j)
k|k

−1
. (34)

Note that the assumption of independence is not correct
if the process noise is non-zero, i.e. Q > 0. In such case,
the estimates are dependent despite the measurements are
independent.

The exact solution to the eqs. (6), (7) requires computation
of cross-covariances P(i j)

k|k . For the system (12), (13), these
covariances are given by [7]

P(i j)
k|k =

[
Inx −K(i)

k H(i)
]
×
[
FP(i j)

k−1|k−1FT +GQGT
]

×
[
Inx −K( j)

k H( j)
]T

(35)

where P0|0 = P0 and K(i)
k is the Kalman gain of the i-th local

Kalman filter.

C. Hierarchical fusion

The hierarchical fusion is a generalisation of the previous
multisensor fusion case. A feedback from the fusion center
(FC) to all local estimators is introduced. The problem is
illustrated in Fig. 3.

To cope with the problem of the dependency of the local
estimates, the FC extracts the measurement information from
the estimates available to the FC. The so called equivalent
measurements are gained by a reverse use of the MF in (19).
Then the independent information coming from each sensor
is fused with the prior estimate x̂k|k−1 , Pk|k−1 by using the
GMF closed form solution (32) that results to

P−1
k|k x̂k|k =P−1

k|k−1x̂k|k−1+

+
S

∑
j=1

{
P( j)

k|k
−1

x̂( j)
k|k −P( j)

k|k−1

−1
x̂( j)

k|k−1

}
, (36)

P−1
k|k =P−1

k|k−1 +
S

∑
j=1

{
P( j)

k|k
−1

−P( j)
k|k−1

−1
}

. (37)

By using the feedback to restart the local filters, the one-
step predictions are replaced by the fused estimate prediction



x̂( j)
k+1|k = x̂k+1|k , P( j)

k+1|k = Pk+1|k (38)

where the one-step central prediction is

x̂k+1|k = F · x̂k|k , (39)

Pk+1|k = F ·Pk|k ·FT +G ·Q ·GT . (40)

The local filters are standard Kalman filters. At (36),
respectively at (37), the equivalent measurements are rep-
resented by the differences

P( j)
k|k

−1
x̂( j)

k|k −P( j)
k|k−1

−1
x̂( j)

k|k−1

with the equivalent measurement covariance matrices

P( j)
k|k

−1
−P( j)

k|k−1

−1
.

Note that, the fused estimates (36) and (37) are equivalent
to those obtained by the centralised KF [4], [10]. This filter
is also called distributed Kalman filter since it distributes the
computation load of the centralised Kalman filter to more
filters.

VI. NUMERICAL ILLUSTRATION

In this section a numerical example representing simple
tracking problem is given. The example illustrates estimation
performance of multi-sensor fusion techniques which were
introduced in Section V.

Consider a state equation in the form [10][
x1,k+1
x2,k+1

]
=
[

1 Ts
0 1

][
x1,k
x2,k

]
+wk, (41)

where x1,k is position of an object, x2,k its velocity, and Ts is
the sampling period. The state noise wk is zero mean with
the covariance matrix

Qk =
[ 1

3 T 3
s

1
2 T 2

s
1
2 T 2

s Ts

]
N0 (42)

with the power spectral density of the noise N0 = 0.16Ts, ∀k.
The position of the object in Cartesian coordinates is

measured by three sensors, i.e. S = 3,

z( j)
k = [1 0]xk + v( j)

k , (43)

where v( j)
k is the measurement noise with zero mean and vari-

ance R = 1 for j = 1,2,3 and ∀k. The particular measurement
noises are independent to each other.

The initial condition of the object and of the fil-
ters is assumed as p(x0) = p(x0|z−1) = N {x0 : [100 −
1]T ,diag([1 1])}, where diag(y) represents diagonal matrix
with the vector y on the main diagonal. The system were run
for k = 0,1, . . . ,K, K = 20, time instants.

Five different estimators were compared, namely
• the centralised (optimal) KF (CKF) - all measurements

are processed by one filter and thus no estimates are
communicated (Section V-A),

• the hierarchical KF (HKF) - each measurement is
processed by a single KF and the resulting estimates
are fused according to relations (36)–(37) and the global
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Fig. 4. Time behaviour of the mean square error

estimator CKF HKF MSC-GMF MSC SKF
MSE 0.1010 0.1010 0.1134 0.1134 0.1528

TABLE I
OVERALL MEAN SQUARE ERROR

(fused) estimate is provided to all particular (local) KF’s
(Section V-C)

• the multi-sensor case (MSC) - each measurement is
processed by a single KF and the resulting estimates
are fused according to relations (33)–(34) but the global
estimate is not provided to the local filters (Section V-
B),

• the multi-sensor case with GMF used in the fusion
centre (MSC-GMF) - same structure as the MSC, but the
local estimates are fused according to the generalised
Millman’s formula, which was introduced in Section 2
(exact GMF relations valid for S KF’s can be found e.g.
in [7]), and

• the single KF (SKF), which process measurement from
one sensor only.

The performance of the considered filters has been com-
pared using the mean square error (MSE), trace of the filter-
ing covariance matrix Pk|k and the Mahalanobis distance.

The MSE for both states, which is given by

MSE(xi,k) =
∑

M
m=1(xi,k,m − x̂i,k|k,m)2

M
, (44)

where xi,k,m is the i-th component of the true state at time k
in the m-th Monte-Carlo simulation and x̂i,k|k,m its (global)
filtering estimate, i = 1,2, are shown in Fig. 4 for M = 104.
Fig. 5 shows the differences in the MSE between the optimal
CKF and the other filters.

The overall mean square error

MSE =
∑

2
i=1 ∑

K
k=0 MSE(xi,k)

2(K +1)
(45)

are given in Table I.
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Fig. 6. Traces of the filtering covariance matrices

The traces of the filtering covariance matrices are shown
in Fig. 6.

The Mahalanobis distance is defined by

DM (xk, x̂k|k) =
√

(xk − x̂k|k)TP−1
k|k (xk − x̂k|k). (46)

The overall Mahalanobis distance computed according to

DM =
∑

K
k=0 ∑

M
m=1 DM (xk,m, x̂k|k,m)

(K +1)M
(47)

is summarised in Tab. II.
In this example, the CKF represents the optimal mean

square error estimator. From Tab. I and Figs. 4, 5, it can be
seen that the HKF provides also the optimal estimates, what
is in accord with theoretical conclusions given in Section
V-C. However, the HKF is more preferable for systems
with many sensors, where the computational demands of
the CKF need to be distributed to local filters. The further
estimators representing multi-sensor fusion, i.e. the MSC
and the MSC-GMF, gives suboptimal estimates only. The
reason is twofold; the global estimates are not provided

estimator CKF HKF MSC-GMF MSC SKF
DM 1.2512 1.2512 1.2536 1.5204 1.2550

TABLE II
OVERALL MAHALANOBIS DISTANCE

to local KF’s, i.e. the local estimators do not comprise
information from other sensors, and the relations for global
estimates computation are not optimal in the mean square
error sense. On the other hand, advantage of multi-sensor
fusion can be found in reduction of required bandwidth for
communication among all estimators. For completeness, the
estimation results of the SKF was shown to emphasise the
effect of multiple measurements.

The mean square error comparison consider the mean esti-
mates only. The trace of the covariance matrix represents the
uncertainty of the estimate. The trace also allows to show the
consequences of ignoring the dependency of the estimates.
The time evolution of the traces of the filtering covariance
matrices is plotted in Fig. 6. The MSC filter underestimates
the covariance matrices that causes the MSC estimates
are over-confident. The Mahalanobis distance evaluates the
estimated mean and covariance matrix simultaneously. The
over-confidence can be seen also from Tab. II, the overall
Mahalanobis distance of the MSC estimates is far greater
than the other ones.

VII. CONCLUDING REMARKS

The paper dealt with state estimation from the data fusion
point of view. The standard relations for filtering, smooth-
ing, multisensor and hierarchical fusion were introduced by
using the generalised Millman’s formula. The hierarchical
and multisensor fusion were compared with the optimal
centralised Kalman filter by means of a numerical example.
The hierarchical fusion gives results which are equivalent
to the centralised fusion, the application of the generalised
Millman’s formula gives suboptimal estimates only. The
approximation of the generalised Millman’s formula by ne-
glecting cross-correlations leads to over-confident estimates.
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