Skip to main content
top

Bibliography

Journal Article

Elastoplasticity of gradient-polyconvex materials

Kružík Martin, Zeman J.

: Zeitschrift für angewandte Mathematik und Physik vol.72,

: GF21-06569K, GA ČR, GA18-03834S, GA ČR

: Elastoplasticity, Gradient polyconvexity, Rate=independent solutions

: 10.1007/s00033-021-01603-w

: http://library.utia.cas.cz/separaty/2021/MTR/kruzik-0544766.pdf

: https://link.springer.com/article/10.1007/s00033-021-01603-w

(eng): We propose a model for rate-independent evolution in elastoplastic materials under external loading, which allows large strains. In the setting of strain-gradient plasticity with multiplicative decomposition of the deformation gradient, we prove the existence of the so-called energetic solution. The stored energy density function is assumed to depend on gradients of minors of the deformation gradient which makes our results applicable to shape-memory materials, for instance.

: BA

: 10102